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Abstract—This paper studies the numerical deformation that
time-domain integration (TDI) methods introduce to the shape
of the coupling between the dynamic modes and variables of
power system models. To this aim, we employ a small-signal
stability analysis (SSSA)-based framework where such mode-
shape deformation is efficiently identified by comparing the
modal participation factors (PFs) of the power system model
with the PFs of the discrete-time system that is derived from
the application of the TDI method. The proposed approach is
illustrated for TDI methods commonly used in dynamic power
system calculations.

Index Terms—time-domain integration (TDI), numerical meth-
ods, mode shape, numerical deformation, participation factors
(PFs).

I. INTRODUCTION

A. Motivation

The stability analysis of a power system following a large
disturbance – such as the sudden loss of an important gener-
ator, a line fault, etc. – relies on the solution of a non-linear
model of differential-algebraic equations (DAEs) [1]. Power
system software tools approximate this solution numerically
by running a time-domain simulation routine. However, rapid
and precise stability analysis through time-domain simulations
is not straightforward, especially with the growing penetration
of converter-based resources which significantly increases the
dynamic complexity and stiffness of power system models.

B. Literature Review

There exist two time-domain simulation approaches to ob-
tain the solution of the DAEs that describe the dynamics of
power systems, namely simultaneous and partitioned [2]. In
the simultaneous approach, differential and algebraic equations
are solved together as one set at each time step through an
implicit integration method, such as the Theta method [3],
[4]. In the partitioned approach, on the other hand, differential
equations are solved at each step for state variables, whereas
algebraic equations are solved separately. The solution of
differential equations in this case is typically obtained with
an explicit integration method [5]. For example, a family of
methods commonly employed in a partitioned-solution setup
is that of explicit Adams-Bashforth [6], [7].
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In contrast to implicit time-domain integration (TDI) meth-
ods, explicit methods are known to be prone to numerical
instabilities. This limits the ability of these methods to use
large integration time steps and has often driven efforts for
the development of device models that are numerically robust
when combined with a given commercial explicit solver. In
this vein, recent works have focused on the formulation and
numerical robustness of converter-based resource models for
systems with low short-circuit strength, e.g., see [8], [9].

The accuracy of a time-domain simulation is tradition-
ally evaluated through truncation error analysis. Moreover,
the numerical stability of a TDI method is conventionally
characterized by testing its convergence on a linear scalar
equation. Recent studies focused on the development of a
framework to assess accuracy and numerical stability of TDI
methods in a unified way. In particular, [10]–[12] estimate
the numerical distortion that a given TDI method introduces
to a power system model by comparing the small-signal
dynamic modes of the original model with the modes of
the approximated system that results from the application of
the method. Such framework allows, first, to extract useful
upper time step bounds that satisfy prescribed requirements
of precision and over/under-damping; and, second, to provide
a fair computational comparison among different methods.

Apart from the numerical error that they cause to the
dynamic modes of a power system model, TDI methods may
also introduce a spurious deformation to the shape of the
coupling between dynamic modes and system variables. This
mode-shape aspect of numerical deformation has not, to the
best of our knowledge, been investigated in the literature. To
provide a first study that tackles this aspect is the main goal
of our work in this paper.

C. Contributions

The contributions of the paper are twofold, as follows:
• Provision of a small-signal stability analysis (SSSA)-

based technique to estimate the numerical mode-shape
deformation introduced to DAE power system models by
TDI methods.

• Thorough discussion on the mode-shape deformation
caused to power system DAEs by well-known TDI meth-
ods, including Theta, two-stage diagonally implicit Runge
Kutta (2S-DIRK), and Heun’s method (HM).



D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II recalls the formulation and numerical integration of
DAE power system models. Section III describes the pro-
posed approach to quantify the numerical deformation of the
system’s mode shapes caused by TDI methods. Section IV
discusses the case study. Conclusions are drawn in Section V.

II. POWER SYSTEM MODEL AND NUMERICAL SOLUTION

A. DAE Model

In short-term stability analysis, the dynamic model of a
power system is conventionally formulated as a set of non-
linear DAEs, as follows [1]:

x′(t) = f(x(t),y(t)) ,

0µ,1 = g(x(t),y(t)) .
(1)

In (1), x(t) : [0,∞) → Rν and y(t) : [0,∞) → Rµ are
the states and algebraic variables, respectively, of the system;
f : Rν+µ → Rν and g : Rν+µ → Rµ are non-linear functions;
0µ,1 is the zero matrix of dimensions µ × 1. For simplicity,
discrete system dynamics are not explicitly considered in (1).
Readers interested in the modeling and handling of disconti-
nuities are referred to [13] and the bibliography therein.

B. Numerical Integration

The time-domain simulation of a power system model con-
sists in employing a proper numerical method to approximate
the solution of (1) for a known set of initial conditions. Every
numerical TDI method applied to (1) can be mathematically
described as a set of non-linear difference equations whose
definition depends on f and g. For example, employing the
well-known Theta method [3] leads to the following set of
difference equations:

xn+1 = xn + h[θf(xn,yn) + (1− θ)f(xn+1,yn+1)] ,

0µ,1 = hg(xn+1,yn+1) ,
(2)

where h is the simulation time step size; 0 ≤ θ ≤ 0.5
determines the method’s damping; and xn+1−ℓ : N → Rν ,
yn+1−ℓ : N → Rµ, l = {0, 1}. Given the values of state
and algebraic variables at some point (xn,yn) := [x⊺

n,y
⊺
n]

⊺

(where ⊺ is the matrix transpose), the goal at each time step is
to compute the new values (xn+1,yn+1). The latter provides
an approximation of the exact solution of (1), i.e:

xn+1−ℓ ≈ x(t+ (1− ℓ)h) ,

yn+1−ℓ ≈ y(t+ (1− ℓ)h) .
(3)

The accuracy and convergence of a TDI depends on the time
step size h, as well as on the numerical properties of the TDI
method employed. For example, (2) for θ = 0.5 corresponds
to the trapezoidal method (TM), which always converges for
stable and diverges for unstable trajectories. On the other
hand, for θ = 0, (2) corresponds to the backward Euler
method (BEM), which has very fast convergence but tends
to overdamp the dynamics of the system.

C. Model Stiffness and SSSA

System (1) is known to be stiff, i.e. its differential equations
span a wide range of time constants [1]. The stiffness of (1)
can be measured by the ratio between the largest and smallest
eigenvalues of the corresponding small-signal model.

Consider that a stationary solution (xo,yo) of (1) is known.
Then, differentiating (1) at the stationary point gives:

x̃′(t) = fxx̃(t) + fyỹ(t) ,

0µ,1 = gxx̃(t) + gyỹ(t) ,
(4)

where x̃(t) = x(t) − xo, ỹ(t) = y(t) − yo; and fx, fy ,
gx, gy are Jacobian matrices evaluated at (xo,yo). Under the
assumption that gy is non-singular1, algebraic variables can be
eliminated2 and (4) can be rewritten as a set of linear ordinary
differential equations, as follows:

x̃′(t) = Ax̃(t) , (5)

where A = fx − fyg−1
y gx. Then, stability of (4) is assessed

through the eigenvalues of (5), which are obtained from the
numerical solution of the algebraic problem [14]:

(sIν −A)v = 0ν,1 , (6)
w(sIν −A) = 01,ν , (7)

where s denotes a complex frequency in the S-domain; Iν
denotes the identity matrix of dimensions ν × ν; v ∈ Cν×1

and w ∈ C1×ν . Every si, i = {1, 2, . . . , ν}, that satisfies (6)
is an eigenvalue of A, with vi, wi being the corresponding
right and left, respectively, eigenvectors. Then, the system is
asymptotically stable if ∀si, ℜ(si) < 0. Let the system be
stable and smax, smin be the eigenvalues with largest and
smallest magnitudes, i.e. smax = max |si|, smin = min |si|,
∀si, then the stiffness ratio of (1) can be defined as follows:

S = |smax|/|smin| . (8)

III. PROPOSED APPROACH

A. SSSA of Integration Methods

The small-disturbance properties of a TDI method applied
to a power system model can be seen by studying a linear
system of difference equations in the form [10], [12]:

yn+1 = Gyn , (9)

where yn : N → Rq . Equation (9) is a discrete-time approxi-
mation of (5), where G varies for different TDI methods but
is always a function of A and h. For the sake of example,
consider the Theta method described by (2). Differentiating
(2) at (xo,yo) gives:

x̃n+1 = x̃n + h[θ(fxx̃n + fyỹn)

+ (1− θ)(fxx̃n+1 + fyỹn+1)] , (10)

0µ,1 = gxx̃n+1 + gyỹn+1 . (11)

1In this paper, we assume that gy is invertible. This assumption comes with
no loss of generality, as potential singularities of gy can be always eliminated
by reformulating (1) to an equivalent DAE set with non-singular gy .

2Eliminating ỹ is the best approach for small/medium size systems. In large
systems it is more efficient to maintain sparsity and work directly with (4).



From (11) we have that ỹn+1 = −g−1
y gxx̃n+1 and ỹn =

−g−1
y gxx̃n, and (10)-(11) can be rewritten as follows:

[Iν − h(1− θ)A] x̃n+1 = (Iν + hθA)x̃n , (12)

or equivalently,

x̃n+1 = [Iν − h(1− θ)A]
−1

(Iν + hθA)x̃n , (13)

which is a system in the form of (9), where yn ≡ x̃n, and:

G = [Iν − h(1− θ)A]
−1

(Iν + hθA) . (14)

The eigenvalue problem associated to (9) is:

(ẑIν −G)v = 0q,1 , (15)
w(ẑIν −G) = 01,q , (16)

where ẑ is a complex frequency in the Z-domain. Then, (9)
is asymptotically stable if and only if |ẑj | < 1 ∀ẑj , j =
1, 2, . . . , q that satisfies (15), (16). Comparison of the eigen-
values of G and A provides a rough yet accurate estimate of
the numerical deformation that a given TDI method introduces
when applied to (1) [10], [12]. Obviously, for the eigenvalues
of the two matrices to be comparable, they need to be referred
to the same plane through the map z = esh. Let si be an
eigenvalue of A and ẑj be the corresponding eigenvalue as
deformed by the TDI method. Then, the associated numerical
deformation can be estimated through the relative error:

ϵs = 100(|si − log(ẑj)/h|)/|si| . (17)

B. Deformation of Mode Shapes

Apart from the numerical deformation that they introduce to
the dynamic modes of a model, TDI methods may also deform
the coupling shape of dynamic modes and state variables. In
this section, we describe the proposed approach to estimate
such mode-shape deformation.

In the context of SSSA, the information of mode shapes for
a given system is included in its right and left eigenvectors
[14]. Given the eigenvectors of a system, an efficient measure
of the shape of coupling between states and variables is
provided through modal participation analysis [15]. Consider
system (5): If si is an eigenvalue of A and vi, wi are the
associated eigenvectors, then the corresponding modal partic-
ipation factor (PF) is defined as the dimensionless number:3

p = wi,k vk,i , (18)

where vk,i is the k-th row element of vi and wi,k is the k-th
column element of wi. The PF in (18) represents the relative
contribution of the i-th mode si in the response of the k-th
state variable xk. Note that PFs can be collected to form the
system’s participation matrix P, as follows:

P =W ⊺ ◦U , (19)

where ◦ denotes component-wise matrix multiplication; U is
the modal matrix with the right eigenvectors as columns, and

3Definition (18) assumes that the algebraic multiplicities of all eigenvalues
equal the geometric ones. The reader interested in modal participation analysis
of systems that do not satisfy this assumption is referred to [16].

W is the modal matrix with the left eigenvectors as rows, i.e.
U =

[
v1 v2 . . . vν

]
, W =

[
w⊺

1 w⊺
2 . . . w⊺

ν

]⊺
.

Now, consider a TDI method and the associated approxi-
mated system (9). The modal participation matrix associated
to (9) is then defined as follows [14]:

Π = W⊺ ◦ V , (20)

with V =
[
v1 v2 . . . vq

]
, W =

[
w⊺

1 w⊺
2 . . . w⊺

q

]⊺
.

Note that matrix Π basically represents an approximation of
the participation matrix P. If p is an element of P and π is
the corresponding element of Π, then the quantity:

ϵp = 100(|π| − |p|)/|p| , (21)

provides an estimate of the associated relative mode-shape
deformation introduced by the TDI method.

We note that metrics (17) and (21) are based on SSSA and
thus they are technically valid around stationary solutions. Yet,
the structure and stiffness of (1) as well as the properties
of TDI methods are features that tend to be “robust” and
hence results provide also a tentative yet accurate estimate of
deformation also for varying operating conditions. For similar
considerations we refer to the literature, e.g., [10], [17], [18].

C. Deformation by Common Methods

In this section, we discuss the mode-shape deformation
introduced by well-known TDI methods used for the simu-
lation of power system dynamics. We first show that certain
methods do not deform at all the mode-shapes of dynamic
modes that are represented by non-degenerate eigenvalues,
i.e. eigenvalues with algebraic multiplicity equal to 1. To this
aim, we provide the following result from linear algebra.

Consider two commuting matrices A and G:

AG = GA . (22)

If vi is a right eigenvector of A corresponding to the non-
degenerate eigenvalue si, then it is also an eigenvector of G.

Proof. The eigenvalue problem associated to A is (6),
whereby substituting vi, si and pre-multiplying by G we get:

(siG−GA)vi = (siG−AG)vi

= (siIν −A)Gvi = 0ν,1 . (23)

Thus, Gvi is also a right eigenvector of A associated to si
or, equivalently, Gvi is proportional to vi:

(λIν −G)vi = 0ν,1 , (24)

i.e., vi is an eigenvector of G associated to the eigenvalue λ.
Note that if G represents a TDI method, as is the case in this
work, then λ ≡ ẑi. The reciprocal case of left eigenvectors can
be derived similarly and thus, for a non-degenerate eigenvalue
and a method whose matrix G commutes with A, we have
that |p| = |π| in (21), or, ϵp = 0.



1) Theta method: Consider the Theta method (2), for which
G is given by (14). To prove commutativity of G and A, we
start by considering the identity A− cA2 = A− cA2, which
can be equivalently rewritten as:

(Iν − cA)A = A(Iν − cA) . (25)

Left and right multiplication by (Iν − cA)−1 yields:

A(Iν − cA)−1 = (Iν − cA)−1A . (26)

Right multiplication of both sides of (26) by bA, b ∈ R gives:

A(Iν − cA)−1bA = (Iν − cA)−1bA2 . (27)

Summing (26) and (27) and using c = h(1−θ), b = hθ, leads
to:

A[Iν−h(1− θ)A]−1(Iν + hθA) =

= [Iν − h(1− θ)A]
−1

(Iν + hθA)A , (28)

or, equivalently, to (22). The proof is complete.
2) BEM and TM: They are special cases of the Theta

method. For θ = 0, BEM is obtained and (28) becomes:

A(Iν − hA)−1 = (Iν − hA)−1A . (29)

TM is obtained for θ = 0.5, in which case (28) becomes:

A(Iν−0.5hA)−1(Iν + 0.5θA) =

= (Iν − 0.5hA)−1(Iν + 0.5θA)A . (30)

3) 2S-DIRK: We consider the 2S-DIRK proposed in [19]
for the simulation of electromagnetic transients. The method’s
first stage computes the solution at an intermediate point:

χn+1 = xn + αhf(χn+1,ψn+1) ,

0µ,1 = hg(χn+1,ψn+1) ,
(31)

where α = 1− 1/
√
2. Then, χn+1 is used to calculate:

χn = βxn + (1− β)χn+1 , β = −
√
2 . (32)

The final solution is obtained from the following equations:

xn+1 = χn + αhf(xn+1,yn+1) ,

0µ,1 = hg(xn+1,yn+1) .
(33)

Differentiating (31)-(33) at (xo,yo) allows expressing the
method in the form of (9), where [10]:

G = (Iν − αhA)−1(Iν − αβhA)(Iν − αhA)−1. (34)

Matrices A, G in (34) are commuting. We omit the proof due
to space constraints, but it can be easily constructed similarly
to the Theta method starting from (26), where in this case
c = αh.

Methods 1)-3) above are implicit methods commonly used
in a simultaneous-solution approach setup. We have shown that
these methods do not deform the mode shape of dynamics rep-
resented by non-degenerate eigenvalues. This is an important
result since critical modes that dominate the dynamic response
of power system models are typically represented by non-
degenerate eigenvalues. The deformation introduced by these
TDI methods is further discussed through simulations in the
case study presented in Section IV.

4) Heun’s Method (HM): We consider an element of the
family of explicit Adams-Bashforth methods, namely HM.
Variants of HM are commonly employed by software tools that
adopt the partitioned-solution approach. In HM, a predictor
provides an initial estimate (ξ(0)n+1) of xn+1, as follows:

ξ
(0)
n+1 = xn + hf(xn,yn) . (35)

Then, accuracy of the current estimation is refined through
corrector steps. The i-th corrector step has the form:

ξ
(i)
n+1 = xn + 0.5hf(xn,yn) + 0.5hf(ξ

(i−1)
n+1 ,yn) , (36)

with i ∈ N∗ : i ≤ r, where typically r = 1 or 2. HM
needs to be combined with a way to deal with interfacing of
algebraic variables [2]. In (36), such interfacing is achieved by
extrapolation, i.e. yn is used instead of yn+1 in the last term
of the right-hand side of (36) [2], [12]. Then, (xn+1,yn+1)
is obtained from:

xn+1 = ξ
(r)
n+1 , (37)

0 = hg(xn+1,yn+1) . (38)

Differentiation of (36)-(38) at (xo,yo) allows expressing the
method in the form of (9), where:

G = Iν + h

r∑
j=0

(
h

2
fx

)j

A , (39)

with r ∈ N∗. The proof of (39) can be found in [12]. For
r ≥ 1, A and G in (39) do not commute, which implies that
HM is expected to deform the mode shapes of both degenerate
and non-degenerate eigenvalues. If r = 0, HM reduces to the
forward Euler method (FEM) and (39) yields G = Iν + hA.
In this case GA = AG = A+ hA2. Yet, FEM is known to
show a poor performance, which from the viewpoint of this
paper implies that the method gives rise to very large ϵs errors.
Thus, in the remainder of this work, FEM is not considered.

IV. CASE STUDY

In this section, we illustrate the proposed approach through
simulations carried out based on the IEEE 39-bus test system.
The IEEE 39-bus system includes 10 synchronous generators
(SGs) represented by a 4-th order model, 34 lines, 12 trans-
formers, and 19 loads. All SGs are equipped with primary
frequency and voltage regulators, and power system stabilizers.
The system’s static and dynamic data can be found in [20].
Simulations in this section are carried out using Dome [21].

A. Eigenvalue Deformation

The eigenvalues of the DAE system obtained from (6) are
compared to the ones of the associated problem (15) for Theta,
2S-DIRK, and HM; numerical deformation is calculated as in
(17) for different time step sizes h. Figure 1 shows the spurious
shift that these methods introduce to the rightmost eigenval-
ues of the system. While HM already presents considerable
deviations from the exact system dynamics for h = 0.01 s,
Theta and 2S-DIRK have a good performance and notably
deteriorate only for h in the order of 10−1 s or higher.



(a) Theta (θ = 0.47) (b) 2S-DIRK (c) HM (r = 2)

Fig. 1: Eigenvalue deformation for Theta, 2S-DIRK and HM.

(a) s = −0.32± 4.09ȷ; ζ = 7.85% (b) s = −1.43± 8.76ȷ; ζ = 16.13% (c) s = −1.41± 7.50ȷ; ζ = 18.45%

Fig. 2: PF deformation ϵp as a function of h for 3 poorly damped modes (with ζ denoting the damping ratio). In each plot,
the states with the highest PFs are represented, along with the associated eigenvalue deformation ϵs.

B. Deformation of Mode Shapes

We focus on the deformation that TDI methods introduce
to the coupling between system states and variables. To this
aim, the participation matrices P and Π are calculated from
(19) and (20), respectively. Since different columns of P, Π
refer to different modes, the columns of Π are sorted to pair
correctly to the modes of the DAE system. Moreover, the
columns of both matrices are normalized so that for every
eigenvalue the sum of all PFs is equal to 1. Then, mode-
shape deformation for each TDI method is estimated from
(21). For Theta and 2S-DIRK, we find that ϵp = 0 for all non-
degenerate eigenvalues, which is consistent with the discussion
of Section III-C. Furthermore, for degenerate eigenvalues,
large values of ϵp are observed in some cases. Yet, these cases
are always associated with very low PFs (|p| < 10−3). Given
that the behavior of a variable is largely defined by a small
number of highly participating modes (often by 1 or 2), the
numerical impact of these cases on the system is negligible.

For HM, significant values of ϵp are observed for both non-
degenerate and degenerate eigenvalues. Figure 2 shows, for the
most poorly damped electromechanical modes, how ϵp varies
as a function of h when 2 corrector steps are used. For the sake
of comparison, the corresponding ϵs is included in each plot.
In Fig. 2, δi, ωi denote the rotor angle and speed, respectively,

of the i-th SG. The deformation presents an irregular behavior
but generally increases with the step size. Very small steps
lead to good accuracy but also lead to a high computational
burden. Note also that for several modes and step sizes the
maximum. ϵp is higher than ϵs. For the most critical mode,
for example (Fig. 2a), h = 0.07 s leads to ϵs < 5% but also
to a maximum ϵp of ϵmax

p > 9%. Assuming for this mode a
prescribed accuracy degree of ϵs, ϵ

max
p < 5%, the maximum

admissible time step is estimated at hmax = 0.012 < 0.07 s.
Another example is shown in Fig. 2c, where hmax = 1 ms is
needed to maintain ϵmax

p < 5%, although ϵs is low even for
h = 0.01 s. The above discussion highlights the relevance of
evaluating both metrics in a numerical analysis.

Table I reports, for different methods, the maximum ad-
missible time step hmax in 4 scenarios: (i) ϵs < 5%, (ii)
ϵp < 5%, (iii) ϵp < 10%, and (iv) ϵs, ϵp < 5%. In all cases,
hmax is obtained considering the 5 most critical eigenvalues
– which are all non-degenerate – and for each eigenvalue, the
3 largest PFs. Results show that hmax for implicit methods
is about an order of magnitude larger than HM and is not
impacted by mode-shape deformation. On the other hand,
hmax for HM is largely impacted by the selected ϵp threshold.
We note that in practice ϵmax

p , ϵmax
s can be setup for any

prescribed requirements. In this regard, a relevant question



TABLE I: hmax estimated for the 5 most critical modes and
3 highest PFs. Theta and 2S-DIRK have ϵp = 0.

Accuracy
Method

Theta 2S-DIRK HM (r = 1) HM (r = 2)

ϵs < 5% 0.080 0.115 0.0087 0.0098
ϵp < 5% ∞ ∞ 0.0012 0.0012
ϵp < 10% ∞ ∞ 0.0026 0.0027
ϵs, ϵp < 5% 0.080 0.115 0.0012 0.0012

Fig. 3: Effect of stiffness on HM mode-shape deformation.
The curves show ϵmax

p for the original and modified systems.

that is worth further study is how to best tune ϵmax
p , ϵmax

s .
A good starting point in this direction can be the analytical
solution of the linearized system, which depends linearly on
eigenvectors (and thus on mode shapes), but exponentially on
system eigenvalues, which directs that ϵmax

p > ϵmax
s .

C. Modified System with DERs and AGC

In this section, the test system is modified as follows.
SGs at buses 32, 33, 34 and 35 are replaced by aggregated,
converter-based distributed energy resource (DER) models.
Each DER synchronizes to the grid through a synchronous
reference frame phase-locked loop (PLL) and provides primary
frequency and voltage support by regulating, at the point of
connection, the d and q axis current components, respectively,
in the dq reference frame. Moreover, SGs are assumed to
provide secondary frequency support through an automatic
generation control (AGC) scheme modeled as an integral
regulator. The DER PLL dynamics are faster than the fastest
dynamics of the original system, while the AGC dynamics are
slower than the slowest dynamics of the original system. As
a consequence, the system’s stiffness ratio, defined as in (8),
increases by an order of magnitude (from 1.2·104 to 1.2·105).
Figure 3 shows, as a function of h, the relative error ϵmax

p for
the 3 most participating states of each of the 5 least damped
modes. It is seen that increasing the system’s stiffness results
in a higher distortion, particularly for small time steps.

V. CONCLUSION

This paper studies the numerical deformation that TDI
methods cause to the mode shapes of power system DAE
models. It is shown that, owing to matrix commutativity prop-
erties, common implicit methods, such as Theta and 2S-DIRK,

do not deform the mode shape of dynamics represented by
non-degenerate eigenvalues. Moreover, the well-known HM
is employed to illustrate through simulations the effect on
mode shapes for the case that commutativity properties do not
hold. In future work, we will employ the proposed approach to
study the numerical robustness of state-of-art converter-based
models integrated with explicit TDI methods.
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