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Abstract— The paper provides a novel framework to study the
accuracy and stability of numerical integration schemes when
employed for the time domain simulation of power systems.
A matrix pencil-based approach is adopted to evaluate the
error between the dynamic modes of the power system and the
modes of the approximated discrete-time system arising from the
application of the numerical method. The proposed approach can
provide meaningful insights on how different methods compare
to each other when applied to a power system, while being
general enough to be systematically utilized for, in principle, any
numerical method. The framework is illustrated for a handful
of well-known explicit and implicit methods, while simulation
results are presented based on the WSCC 9-bus system, as
well as on a 1, 479-bus dynamic model of the All-Island Irish
Transmission System.

Index Terms— Time Domain Integration (TDI), stability and
accuracy of numerical methods, Small-Signal Stability Analysis
(SSSA), matrix pencils.

I. INTRODUCTION

A. Motivation

Time domain simulations are an essential component of
power system dynamic analysis and security assessment. In
general, a time domain simulation consists in integrating the
dynamic power system model for a set of initial conditions
and through a proper numerical method. The need for the
application of a numerical method leads to an approximated
representation of the original system’s behavior, with the
deviation between exact and obtained solution being dependent
upon the method’s properties and parameters, as well as on the
structure of the modeled dynamics. The goal of this work is
to provide a novel and systematic approach to study the ap-
proximation induced to the dynamic modes of power systems
by numerical Time Domain Integration (TDI) methods.

B. Literature Review

A dynamic power system model is conventionally described
by a set of non-linear and stiff Differential Algebraic Equations
(DAEs) [1]. The TDI of a power system often relies on the
implementation of an implicit numerical method, since explicit
schemes – such as the Forward Euler Method (FEM) – perform
poorly for stiff problems. The implicit method most commonly
utilized in power system dynamic simulations is arguably
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the Implicit Trapezoidal Method (ITM), yet a number of
schemes have been proposed to achieve the best compromise
between accuracy and efficiency of simulation, see [1]–[8].
For example, some studies propose to combine or substitute
the ITM with a hyperstable scheme, such as the Backward
Euler Method (BEM), with a scope to improve the handling
of discontinuities and avoid undamped numerical oscillations
under large time steps [3], [7].

The precision of a TDI is typically assessed on the basis of
certain metrics, such as the local and global truncation errors
of the numerical scheme employed. Truncation errors provide
a good measure of the deviation between exact and numeri-
cally computed trajectories and are the standard criterion used
for the implementation of automatic step size and order control
techniques [4], [5]. However, the ability of a TDI method to
prevent the exponential growth of truncation errors cannot be
predicted with the truncation errors. Information on the latter
is given instead from the characterization of TDI methods
according to their properties of numerical stability. As a matter
of fact, the major advantage of implicit over explicit methods
is that they outperform in terms of numerical stability. For
example, the ITM is symmetrically A-stable, i.e. it converges
for stable and diverges for unstable trajectories, whereas the
FEM is unstable, i.e. it always diverges for sufficiently large
time steps.

The classical approach to stability characterization of a TDI
method is to check its response when applied to a linear test
equation. Consequently, the main limitation of this approach
is that it is only qualitative, since it does not involve the
dynamics of the specific model to be integrated, and it is
thus not suitable for accuracy assessment. On the contrary,
this work is concerned with the problem of providing a
unified framework, based on Small-Signal Stability Analysis
(SSSA), to study the accuracy and stability of numerical
methods applied for the TDI of power systems. This problem is
tackled by introducing a generic model of numerical method
that admits as special cases the most important families of
methods, the behavior of which is then analyzed by studying
the associated matrix pencils [9]. The proposed formulation
allows quantifying the spurious distortion that a TDI method
introduces to the dynamic modes of the power system model to
which it is applied, as well as systematically realizing relevant
analysis tools already available in the literature. In this vein
we cite [10], which presents a tool to assess the numerical
approximation of the motion of simple linear networks by
means of distortion maps.



C. Contributions

The specific contributions of the paper are as follows.
• A general numerical stability analysis framework based

on matrix pencils that, in principle, is applicable to any
numerical TDI scheme.

• The proposed framework is utilized to evaluate the nu-
merical distortion introduced by TDI methods to the
dynamic modes of power system models.

• For certain Runge-Kutta (RK) methods, it is also shown
that the pencil to be studied emerges as an extension of
the method’s growth function.

• A discussion on how the proposed approach can be
employed to estimate useful upper time step bounds that
satisfy certain accuracy criteria, as well as to provide fair
computational-burden comparisons of different methods.

It is important to note that one cannot “compare” the
proposed framework to a specific integration method. Rather,
one can use the proposed approach to define the numerical
stability properties of such an integration method.

D. Organization

The remainder of the paper is organized as follows. Sec-
tion II describes the dynamic power system model and
provides preliminaries on the numerical TDI. The proposed
framework to study the stability and accuracy of power system
TDI is presented in Section III. The case studies are discussed
in Section IV based on the well-known WSCC system and a
dynamic model of the All-Island Irish Transmission System
(AIITS). Finally, conclusions are drawn in Section V.

II. INTEGRATION OF POWER SYSTEM MODEL

A. Power System Model

The mathematical model that describes the dynamics of a
power system can be formulated as follows:

Ex′(t) = φ(x(t)) , (1)

where E ∈ Rr×r; x : [0,∞) → Rr is the column vector of
the system’s variables and x′ denotes the time derivative of x;
φ : Rr → Rr is a set of non-linear functions that defines the
equations of the system. Discrete variables in (1) are modeled
implicitly, i.e., each discontinuous change in the system leads
to a jump from (1) to a new continuous set of equations in the
same form. A relevant special case is when (1) is formulated
as a set of explicit DAEs, i.e.:

E =

[
Imx 0mx,my

0my,mx 0my,my

]
, φ(x(t)) =

[
f(x(t),y(t))
g(x(t),y(t))

]
, (2)

and x(t) = [xT(t) yT(t)]T, where x : [0,∞) → Rmx and
y : [0,∞) → Rmy are the state and algebraic variables; and
f : Rmx+my → Rmx , g : Rmx+my → Rmy , are non-linear
functions that define the differential and algebraic equations,
respectively; Imx denotes the mx × mx identity matrix and
0mx,my the mx ×my zero matrix. Equivalently, one has:

x′(t) = f(x(t),y(t)) ,

0my,1 = g(x(t),y(t)) .
(3)

Formulation (3) is the standard model employed in the liter-
ature for transient and voltage stability studies [11]. Yet, the
main results of this work hold also for the more general model
(1) and, thus, (1) is the starting point considered in this paper.

B. Numerical Integration

A TDI method for power systems is a discrete-time approxi-
mation employed to solve system (1) for a defined time period
and set of initial conditions. We propose the following generic
model to describe a TDI method.

Definition 1. In an implicit form, a TDI method applied to
system (1) can be described by a discrete-time system, as
follows:

0r,1 = η(xt,xt−h,xt−a1h,xt−a2h, . . . ,xt−aρh) , (4)

where h is the integration time step size, which can be constant
or varying; r = mx + my; η : R(ρ+2)r → Rr is a vector of
non-linear functions; xt : N∗h → Rr; and ai > 0, ai 6= 1,
i = 1, 2, . . . , ρ.

The discrete-time system (4) covers most elements of the
two largest and most important families of TDI methods,
namely RK and linear multistep methods. We clarify here that
(4) is expressed in an implicit form but this should not be
confused with the method being implicit or not. In fact, both
explicit and implicit methods can be represented in the form
of (4). With this regard, we propose the following definition
of explicit numerical methods applied to system (1).

Definition 2. If, without resorting to further approximations,
system (4) can be equivalently rewritten in the form:

Ext = θ(xt−h,xt−a1h,xt−a2h, . . . ,xt−aρh) , (5)

where E is given by (2); and θ : R(ρ+2)r → Rr; then it
describes an explicit numerical method. Otherwise, the method
is implicit.

Implicit methods involve an extra computation compared
to explicit methods, i.e. they require the solution of system
(4) for xt. This computation is done iteratively at every step
of the integration. For instance, the i-th iteration of Newton’s
method when applied to (4) is:

x
(i)
t = x

(i−1)
t −

[
∂η(i−1)

∂x
(i−1)
t

]−1
η(i−1) , (6)

where ∂η/∂xt denotes the Jacobian matrix of (4). The fact that
such computational step is not required by explicit methods is
the reason why the latter are still the option preferred by some
software tools. We cite, for example, the use of the explicit
modified Euler method in [12]. Hence, for completeness, this
paper discusses both explicit and implicit methods.

C. Problem Stiffness and Small-Signal Model

The TDI of a power system constitutes a stiff problem,
i.e., the time constants that define the differential equations of
the model span multiple time scales. A measure of stiffness

2



is given by the stiffness ratio of the corresponding small-
signal model. Let xo be an equilibrium point of (1). Then,
linearization around xo gives:

E∆x′(t) = A∆x(t) , (7)

where A = ∂φ/∂x and ∆x(t) = x− xo. The eigenvalues of
(7) are the solutions of the characteristic equation:

det(sE−A) = 0 , (8)

where the family of matrices sE−A parameterized by s ∈ C
is called the matrix pencil of system (7) [9]. In total, the pencil
sE − A has ν = rank(sE − A) finite eigenvalues plus the
infinite eigenvalue with multiplicity r − ν. Moreover, (7) is
asymptotically stable if and only if the real parts of all finite
eigenvalues s∗ of sE−A satisfy Re(s∗) < 0. In practice, the
eigenvalues of sE − A are computed numerically, see [13].
We finally provide the following definition.

Definition 3. Assume that (7) is asymptotically stable and let
si = αi + βi, i = 1, 2, . . . ,ν, be the i-th finite eigenvalue
of sE −A. Let also σmax = max{|αi|}, σmin = min{|αi|}
denote the maximum, minimum exponential decay rates of the
system, respectively. Then, the stiffness ratio of (7) is [14]:1

S =
σmax

σmin
. (9)

It is relevant to note that the definition of stiffness is not
unique. For example, an alternative definition may also take
into account the effect of the imaginary parts βi, e.g. by defin-
ing as measure of stiffness the ratio of the finite eigenvalues
with largest and smallest magnitude.

Apart from its presence in (9), the maximum exponential
decay rate σmax is an index commonly employed by soft-
ware tools to make an heuristic estimation of the maximum
admissible integration time step based on empirical rules,
to prevent either that the fastest dynamics of the system
are filtered out, or, in the case of an explicit method, that
convergence is compromised [16]. On the contrary, in this
paper we systematically evaluate the error of the TDI method
in approximating the dynamic modes of the system which
allows extracting upper time step bounds with higher accuracy.

D. Classical Stability Analysis

This section briefly recalls the classical approach to stability
analysis of numerical TDI methods. The stability of a numer-
ical method for ordinary differential equations is traditionally
tested and classified by applying the method to Dahlquist’s
test equation:

ξ′(t) = λ ξ(t) , (10)

where λ ∈ C. Let apply an integration method to (10) so that:

ξt = R(λh) ξt−h , (11)

1Spurious zero eigenvalues due to the arbitrariness of the reference angle
and the redundancy of one or more machine rotor angle equations (see the
discussion in [15]) are not taken into account in Definition 3.

where R(λh) is the method’s growth or stability function.
Then, the stability region of the method is defined by the set:

{λ ∈ C : |R(λh)| < 1} . (12)

As an example, consider the application of the ITM to (10):

ξt = ξt−h + 0.5hλξt−h + 0.5hλξt , (13)

which can be equivalently written in the form of (11), where:

R(λh) =
1 + 0.5λh

1− 0.5λh
. (14)

From (12), (14), we have that the stability region of the ITM
is the left half of the S-plane.

For RK methods, the growth function can be written as [17]:

R(λh) =
det(Iρ − λhQ + λheρr)

det(Iρ − λhQ)
, (15)

where ρ is the method’s number of stages; eρ is the ρ×1 vector
of ones; and [QT rT]T, is the method’s generating matrix, Q ∈
Rρ×ρ, r ∈ R1×ρ. Note that explicit RK methods have det(Iρ−
hλQ) = 1, and thus their growth function is a polynomial of
λh. On the other hand, the growth function of an implicit RK
method is a quotient of two polynomials of λh.

III. MATRIX PENCIL-BASED NUMERICAL ANALYSIS

A. Proposed Approach

In this section we provide a general approach to study the
numerical distortion caused by TDI methods to the dynamic
modes of system (1). First, we prove that the approximation
introduced by any numerical method applied to a system
in the form of (1) can be studied through a linear matrix
pencil. Consider the discrete-time system (4) and assume for
simplicity but without loss of generality that h is constant.
Then, linearization of the system around the equilibrium xo
of (1), which is also a fixed point of (4), gives:

0r,1 =
∂η

∂xt
∆xt +

∂η

∂xt−h
∆xt−h +

∂η

∂xt−a1h
∆xt−a1h

+
∂η

∂xt−a2h
∆xt−a2h + . . .+

∂η

∂xt−aρh
∆xt−aρh . (16)

We provide the following proposition.

Proposition 1. The stability properties of system (16) can
be assessed by studying the stability of a linear discrete-time
system in the form:

Ẽ yt = Ã yt−h . (17)

The proof of Proposition 1 is provided in the Appendix.
Then, the stability of (17) can be seen through the eigenvalues
of the matrix pencil z̃Ẽ− Ã. In particular, (17) is asymptoti-
cally stable if and only if all finite eigenvalues z̃∗ of its pencil
z̃Ẽ−Ã lie within the open unit disc, or equivalently, |z̃∗| < 1.

The eigenvalues of z̃ Ẽ − Ã represent, in the Z-plane, the
small-disturbance dynamic modes of (1) as approximated by
the numerical method (4). Let z̃k be an eigenvalue of z̃ Ẽ−Ã
approximating the k-th dynamic mode of the power system
model, which is represented by the finite eigenvalue sk =
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α+ β of sE−A. Then, the two eigenvalues become directly
comparable by mapping the one to the domain of the other.
Mapping z̃k from the Z-plane to the S-plane, we get:

s̃k =
1

h
log(z̃k) = α̃+ β̃ , (18)

where log(·) denotes the complex logarithm. Then, the numer-
ical distortion caused to the k-th mode by the TDI method is:

ds,k = s̃k − sk . (19)

The distortion caused to the damping of the k-th mode is:

dζ,k = ζ̃k − ζk , (20)

where ζk = −α/(α2 + β2). Positive (negative) values of dζ,k
indicate that the mode is overdamped (underdamped).

B. Illustrative Examples

This section discusses the matrix pencils that characterize
the stability and accuracy of some well-known integration TDI
methods. In particular, six methods are considered, namely
(i) FEM, (ii) Runge-Kutta 4 (RK4), (iii) BEM, (iv) ITM,
(v) 2-Stage Diagonally Implicit Runge-Kutta (2S-DIRK) and
(vi) 2-step Backward Differentiation Formula (BDF2). These
methods are also employed for the case studies of Section IV.

Forward Euler Method (FEM): The FEM is the simplest
among all integration schemes. When applied to system (1),
the FEM reads:

Ext = Ext−h + hφ(xt−h) , (21)

where x′(t) is approximated with the finite difference formula
(xt − xt−h)/h. Linearization of (21) around xo gives:

E∆xt = E∆xt−h + hA∆xt−h . (22)

Equivalently, (22) can be rewritten as a discrete-time system
in the form of (17) with pencil z̃Ẽ−Ã, where yt ≡ ∆xt and:

Ẽ = E , Ã = E + hA . (23)

Runge-Kutta 4 (RK4): The classical RK4 is a fourth-order
method and is the most well-known explicit RK method.
Applied to (1), the RK4 method reads:

Ext = Ext−h +
h

6
(k1 + 2k2 + 2k3 + k4) , (24)

k1 = φ(xt−h) , k2 = φ(xt−h + 0.5hk1) ,

k3 = φ(xt−h + 0.5hk2) , k4 = φ(xt−h + hk3) .

Linearization of (24) yields the following expressions:

k1 = A∆xt−h , k2 = A(∆xt−h + 0.5hk1) ,

k3 = A(∆xt−h + 0.5hk2) , k4 = A(∆xt−h + hk3) .
(25)

Equivalently, the linearized method can be written in the form
of (17) with matrix pencil z̃Ẽ− Ã, where yt ≡ ∆xt and:

Ẽ = E ,

Ã = E + hA +
(hA)2

2
+

(hA)3

6
+

(hA)4

24
.

(26)

Backward Euler Method (BEM): The BEM is the implicit
variant of the FEM and is a hyperstable method with stability
region the part of the S-plane that is outside the unit disk
centered at 1. When applied to system (1), the BEM reads:

Ext = Ext−h + hφ(xt) . (27)

Linearization of (27) leads to a discrete-time system in the
form of (17), where yt ≡ ∆xt and:

Ẽ = E− hA , Ã = E . (28)

Implicit Trapezoidal Method (ITM): The ITM can be inter-
preted as the weighted sum of the FEM and BEM with equal
weights for the two methods. Applied to system (1), the ITM
reads:

Ext = Ext−h + 0.5hφ(xt−h) + 0.5hφ(xt) . (29)

Linearization of (29) leads to a system in the form of (17),
where yt ≡ ∆xt and:

Ẽ = E− 0.5hA , Ã = E + 0.5hA . (30)

Note that permitting for unequal weights in (29) leads to
a generalized version of the ITM commonly referred to as
the Theta method [5]. As a byproduct of the adopted pencil-
based approach, we can show that the FEM, BEM, ITM, as
well as all elements of the Theta method belong to the wider
family of methods whose pencils arise from the application
of a linear spectral transform to sE − A. Most importantly,
studying such generalized family of pencils allows revealing
the elements possessing certain qualitative properties, such as
a certain class of numerical stability. As an example, in this
paper we obtain conditions under which an element of the
family is symmetrically A-stable. The relevant propositions
and their proofs are provided in the Appendix.

2-Stage Diagonally Implicit Runge-Kutta (2S-DIRK): Diag-
onally implicit RK methods is a family of methods suitable
for the solution of stiff initial value problems. In this paper,
we consider the 2S-DIRK method proposed in [6] for the
simulation of electromagnetic transients. The method reads:

Ext+(α−1)h = Ext−h + αhφ(xt+(α−1)h) ,

ut−h = βxt−h + γ xt+(α−1)h ,

Ext = Eut−h + αhφ(xt) ,

(31)

with α = 1−1/
√

2, β = −
√

2, γ = 1+
√

2. Linearizing (31):

E∆xt+(α−1)h = E∆xt−h + αhA∆xt+(α−1)h ,

∆ut−h = β∆xt−h + γ∆xt+(α−1)h ,

E∆xt = E∆ut−h + αhA∆xt .

(32)

By eliminating ∆ut−h, one can rewrite (32) as follows:

Ext+(α−1)h = E∆xt−h + αhA∆xt+(α−1)h ,

E∆xt = βE∆xt−h + γE∆xt+(α−1)h + αhA∆xt ,
(33)

or equivalently:

(E− αhA)∆xt+(α−1)h = E∆xt−h , (34)
(E− αhA)∆xt = (E− αβhA)∆xt+(α−1)h , (35)
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where we have replaced β + γ = 1. Substituting (34) to (35)
leads to a system in the form of (17), where yt ≡ ∆xt and:

Ẽ = E− αhA ,

Ã = (E− αβhA)(E− αhA)−1E .
(36)

2-step Backward Differentiation Formula (BDF2): The
backward differentiation formulas is a family of implicit, linear
multistep methods. In this paper, we consider the BDF2 which,
when applied to (1), reads:

0r,1 = Ext −
4

3
Ext−h +

1

3
Ext−2h −

2

3
hφ(xt) . (37)

Linearization of (37) gives:

(E− 2

3
hA)∆xt =

4

3
E∆xt−h −

1

3
E∆xt−2h . (38)

Adopting the notation:

yt =

[
∆xt−h
∆xt

]
, yt−h =

[
∆xt−2h
∆xt−h

]
,

the system can be written in the form of (17), where:

Ẽ =

[
Ir 0r,r
0r,r E− 2

3hA

]
, Ã =

[
0r,r Ir
− 1

3E
4
3E

]
.

C. Link to Growth Function

In this section, we discuss the link between the growth
function of a RK method and the corresponding matrix pencil
z̃Ẽ−Ã that arises if the method is applied for the TDI of (1).
First, consider the test equation (10) and write λ as a ratio of
two values, i.e., λ = µ1/µ2. Then, (15) can be rewritten as
the ratio of two functions of µ1, µ2 and h, as follows:

R(λh) := F(µ1, µ2, h) =
N (µ1, µ2, h)

D(µ1, µ2, h)
, (39)

where
N (µ1, µ2, h) = det(µ2Iρ − hµ1Q + hµ1eρb

T) ,

D(µ1, µ2, h) = det(µ2Iρ − hµ1Q) .
(40)

Using (39), (11) becomes:

D(µ1, µ2, h)xt = N (µ1, µ2, h)xt−h , (41)

and hence, the numerical stability of the method can be equiv-
alently seen through the pencil z̃D(µ1, µ2, h)−N (µ1, µ2, h).

For explicit RK methods, as well as for certain implicit
methods, including the BEM and ITM, the discussion above
can be extended for system (7) integrated through (17). Ob-
serving that matrices Ã, Ẽ, are functions of A, E and h,
and extending the scalar functions N , D to the corresponding
matrix functions N , D, we find that:

Ẽ = D(A,E, h) , Ã = N (A,E, h) . (42)

As a consequence of (42), the pencils associated with the
RK methods can be readily obtained by extending known
results about their growth functions. For example, setting
λ = µ1/µ2 in (13), one obtains that the growth function of
the ITM is given by (39), where:

D(µ1, µ2, h) = µ2 − 0.5µ1h ,

N (µ1, µ2, h) = µ2 + 0.5µ1h ,

and hence, consistently with Section III-B, one obtains that:

Ẽ = D(A,E, h) = E− 0.5hA ,

Ã = N (A,E, h) = E + 0.5hA .

D. Validity of SSSA

The paper relies upon the linearization of systems (1) and
(4) at a steady state solution xo. Strictly speaking, thus, the
proposed approach is valid only around xo. With this regard,
the following remarks are relevant.

In the neighborhood of xo, (19) and (20) provide precise
measures of the modes’ numerical approximation given a time
step or, the other way around, provide the required step size to
achieve a certain accuracy. A method that does not fulfill the
user’s requirements in view of these measures can be discarded
without the need for further calculations. Thus, the proposed
tool can be very useful when comparing between different
methods or testing potential new numerical schemes on their
suitability for TDI of a given power system model. Last but
not least, the proposed tool requires only the calculation of the
associated matrix pencils and thus it allows testing methods
whose full implementation in the time domain routine may be
an involved procedure.

The structure of the dynamic modes and the stiffness of a
power system model are features that do not change dramati-
cally by varying the operating point, and thus we stress that the
proposed measures are also rough yet accurate estimates of the
amount of approximation introduced by TDI methods under
varying operating conditions, also owing to the qualitative
properties of the methods which remain unchanged, such as
their class of numerical stability. Therefore, the analysis does
not need to be repeated often. Other works that have faced a
similar problem yet for different application are e.g. [18]–[20].

IV. CASE STUDIES

The simulation results provided in this section illustrate
important features of the proposed framework to study the
stability and accuracy of numerical methods applied for the
TDI of power systems. The case study in Section IV-A is
based on the well-known WSCC 9-bus system [21], whereas
Section IV-B considers a realistic model of the AIITS.

Simulations are carried out using Dome [22]. The version
of Dome employed in this paper depends on ATLAS 3.10.3
for dense vector/matrix operations; CVXOPT 1.2.5 for sparse
matrix operations; and KLU 1.3.9 for sparse matrix factoriza-
tions. The eigenvalues of matrix pencils are calculated using
LAPACK [23]. All simulations are executed on a 64-bit Linux
operating system running on 2 quad-core Intel Xeon 3.5 GHz
CPUs, and 12 GB of RAM.

A. WSCC 9-Bus System

This section presents simulation results based on the WSCC
9-bus system. The system comprises 6 transmission lines and
3 medium voltage/high voltage transformers; 3 Synchronous
Generators (SGs) represented by fourth-order, two-axis models
and equipped with Turbine Governors (TGs) and Automatic
Voltage Regulators (AVRs). In transient conditions, loads are
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Fig. 1: WSCC system: Eigenvalue analysis of numerical TDI methods.

modeled as constant admittances. In total, the system’s DAE
model includes 39 state and 57 algebraic variables.

The small-disturbance dynamics of the system are repre-
sented by the eigenvalues of the pencil sE −A. Eigenvalue
analysis shows that the system is stable when subjected to
small disturbances, with the fastest and slowest dynamics
represented by the real eigenvalues −1000 and −0.02, respec-
tively, which gives a stiffness ratio S = 5 · 104.

We consider the six numerical methods discussed in Sec-
tion III-B. For each method, we calculate the associated pencil
z̃ Ẽ − Ã and its eigenvalues, which are then mapped to the
S-plane according to (18) and compared to the eigenvalues
of sE − A. The comparison results for different time step
sizes are presented in Fig. 1. As expected, for a sufficiently
large h the explicit methods are destabilized. Varying h allows
determining the maximum time step before numerical stability
is lost. In particular, the time step margin of the FEM and
the RK4 for the WSCC system are obtained as 0.005 s and
0.011 s, respectively. For larger time steps, there is at least
one dynamic mode for which α < 0 and α̃ > 0 in (19) and
thus any TDI executed with such step values is guaranteed
to diverge. The figure also shows that both the BEM and the
BDF2 overdamp the dynamics of the system, which is again as
expected. In addition, varying h allows estimating the upper
time step bound for which the overdamping is less than a
certain prescribed degree. For instance, if it is required that
the overdamping of all dynamic modes of the system is less
than dζ = 1% (see also eq. (20)), then the upper bounds of h
for the BEM and BDF2 are 0.002 s and 0.051 s, respectively.
Finally, among all methods considered, the 2S-DIRK shows
the highest accuracy, while the ITM also shows very good
accuracy for time steps smaller than 10−1 s. We focus on
the dominant dynamic mode of the system, i.e. the local
electromechanical oscillation of the SG connected to bus 2.
In the eigenvalue analysis, this mode is represented by the
complex pair −0.1699 ± 7.6696 with damping ratio 2.21%.
The root loci in Fig. 2 illustrate the accuracy of the TDI
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Fig. 2: WSCC system dominant mode: Root locus of numer-
ical approximation as the time step is increased.

methods in approximating the mode as h increases. The figure
shows the route of explicit methods towards instability as well
as of hyperstable methods to overdamped regions. From the
close-up shown in Fig. 2b, it is seen that, interestingly, the
RK4 introduces a slight overdamping for small enough step
sizes. Comparing the ITM with the 2S-DIRK, which are both
symmetrically A-stable, we see that under the same step the
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2S-DIRK is more accurate. In addition, for steps smaller than
0.05 s, the 2S-DIRK follows precisely the mode’s damping,
whereas for larger steps, it introduces a slight overdamping.
On the other hand, the ITM underdamps the mode, which for
a large enough h leads to sustained numerical oscillations.
For the sake of example, Table I gives the damping distortion
dζ introduced by all methods for h = 0.05 s. Finally, as
h increases, the distorted eigenvalue approaches zero for all
methods. This is consistent with (18), whereby substituting the
limit case h→∞, one has s̃k → 0.

TABLE I: WSCC system dominant mode: Damping distortion
for h = 0.05 s; and time step leading to |ds| = 0.1.

FEM RK4 BEM ITM 2S-DIRK BDF2

dζ [%] -18.5 -22.4 18.2 -0.052 -0.005 0.9
(h = 0.05 s)

h [s] 0.003 0.0002 0.003 0.052 0.075 0.026
(|ds| = 0.1)
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Fig. 3: Dominant mode of WSCC system: Magnitude of
numerical distortion.

For the same mode, the magnitude of numerical distortion
as a function of h is depicted in Fig. 3. The BEM and the
FEM, being the former the implicit version of the latter, cause
practically the same amount of distortion for every h, yet in
opposite directions, with the BEM leading to overdamping
and the FEM to instability (see Fig. 2a). Figure 3 allows
determining the time step that introduces a certain amount
of numerical distortion to the mode. For example, the time
step of each method leading to |ds| = 0.1 is given in Table I.

In the remainder of this section, we focus exclusively on
implicit methods, i.e. further simulation results are provided
for the BEM, ITM, 2S-DIRK and BDF2. We carry out a non-
linear time domain simulation considering a three-phase short-
circuit at bus 5. The fault occurs at t = 1 s and is cleared
after 80 ms by tripping the line that connects buses 5 and 7.
The system is integrated using h = 0.05 s. The response of
the rotor speed of the SG at bus 2 (ωr,2), i.e., of the variable
mostly participating to the dominant system mode, is shown in
Fig. 4. For comparison, we have included a reference trajectory
which represents an accurate integration of the system.2 The
trajectories in Fig. 4 are consistent with the results of Table I,

2The reference trajectory in TDI results of this paper are obtained using
the 2S-DIRK with h = 0.001 s.

confirming that the small-disturbance analysis results provide
a rough yet accurate estimation of the damping distortion
introduced by TDI methods during the simulation. Considering
the same disturbance, we simulate the system with the values
of h that correspond to |ds| = 0.1 of the dominant mode, as
obtained in Table I. The response of the rotor speed of the
SG at bus 2 in this case is shown in Fig. 5. As expected,
integrating the system under a certain magnitude of numerical
distortion leads to similar trajectories for all methods. Yet, the
trajectories present some differences, since the distortion of
each method is not in the same direction with the others (see
e.g. Fig. 2). For example, the oscillation obtained with the
BEM appears to be the most suppressed since the direction of
its distortion introduces the largest overdamping.
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Fig. 4: WSCC system: ωr,2 after the fault at bus 5, h = 0.05 s.
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Fig. 5: WSCC system: ωr,2 after the fault at bus 5, |ds| = 0.1.

B. All-Island Irish Transmission System

This section provides simulation results on a 1, 479-bus
model of the AIITS. The topology and steady-state operation
data of the system have been provided by the Irish transmission
system operator, EirGrid Group. Dynamic data have been
determined based on current knowledge about the technology
of generators and controllers. The system comprises 796 lines,
1, 055 transformers, 245 loads, 22 SGs, with AVRs and TGs,
6 power system stabilizers and 176 wind generators. The
model has 1, 443 state and 7, 197 algebraic variables.

Eigenvalue analysis shows that the system is stable around
the examined equilibrium point. The fastest and slowest dy-
namic modes have exponential decay rates −99, 900.1 and
−0.077, respectively, and thus the stiffness ratio of the model
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TABLE II: AIITS: Cumulative ωr,2 trajectory mismatches introduced by TDI methods, h = 0.1 s.

Oper. point Disturbance BEM ITM 2S-DIRK BDF2

Base case SG outage 1.8 · 10−2 4.3 · 10−4 2.0 · 10−4 8.8 · 10−3

Load trip 6.4 · 10−3 2.2 · 10−3 1.2 · 10−4 2.2 · 10−3

3-phase fault 8.7 · 10−3 2.7 · 10−3 1.3 · 10−3 9.0 · 10−3

EWIC trip 2.5 · 10−2 1.1 · 10−3 5.4 · 10−4 1.2 · 10−2

+5% load SG outage 5.4 · 10−1 5.6 · 10−2 5.5 · 10−2 7.3 · 10−2

Load trip 1.0 · 10−1 1.7 · 10−2 8.2 · 10−3 4.3 · 10−2

3-phase fault 3.2 · 10−1 4.4 · 10−2 3.3 · 10−2 1.8 · 10−1

EWIC trip 4.6 · 10−2 1.2 · 10−2 6.0 · 10−3 3.9 · 10−2

−5% load SG outage 1.8 · 10−2 6.7 · 10−4 3.1 · 10−4 9.0 · 10−3

Load trip 5.5 · 10−3 2.0 · 10−3 1.1 · 10−4 2.0 · 10−3

3-phase fault 4.2 · 10−2 1.3 · 10−2 6.4 · 10−3 4.3 · 10−2

EWIC trip 1.2 · 10−1 5.7 · 10−3 3.7 · 10−3 5.9 · 10−2

is S = 1.3 · 106. We consider the most poorly damped elec-
tromechanical mode of the system, i.e., the local oscillation of
the SG connected to bus 507. In the eigenvalue analysis results,
this mode is represented by the complex pair −0.3042 ±
4.1426 with damping ratio 7.32%. Hereafter, we will refer to
this mode as MCEM (Most Critical Electromechanical Mode).
The magnitude of numerical distortion of the damping of the
MCEM as a function of h for the BEM, ITM, 2S-DIRK and
BDF2 is shown in Fig. 6.
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Fig. 6: AIITS: Damping distortion dζ , MCEM.

TABLE III: AIITS: Time step for |ds| = 0.1, MCEM.

BEM ITM 2S-DIRK BDF2

h [s] 0.011 0.131 0.189 0.066

The time steps that correspond to |ds| = 0.1 for the
MCEM are given in Table III. Using these time step values we
provide a comparison of the four implicit numerical methods
by executing a non-linear TDI, assuming the loss of the SG
connected to bus 684 at t = 1 s. The response of the rotor
speed of the SG at bus 507 following the disturbance is
shown in Fig. 7. As expected, all methods provide a similar
response and a small deviation from the reference trajectory.
The trajectory obtained with the BEM appears to be more
damped than the others, which was also to be expected (see
Section IV-A).

A relevant remark is that evaluating different methods under
the same amount of numerical distortion can be employed as a
means for their fair computational comparison. As an example,
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Fig. 7: AIITS: ωr,2 after SG outage, |ds| = 0.1 (MCEM).
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for each implicit TDI method we vary |ds| for the MCEM
and for every value we calculate the corresponding time step
h. Using this step value we integrate the system and compute
the computational time required to complete the simulation.

The results shown in Fig. 7 indicate that, for the examined
scenario, the ITM is the method that takes the lowest total
computational time. Yet, as |ds| increases, the relative differ-
ence of the ITM with respect to the other methods decreases.
For large time steps, in fact, the ITM shows large sustained
numerical oscillations which in turn lead to an increased
number of required iterations per step, while the opposite is
true for the methods that introduce overdamping, i.e., they
require less iterations.

We note that considering a single dynamic mode is assumed
in Figs. 3 and 6 for the sake of simplicity, but this is not a
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limitation of the proposed approach, since the analysis can be
extended to take into account a group of critical modes, or
even all system modes.

Finally, in addition to the operating condition assumed so
far in this example (base case), we consider two more. The
new operating conditions are obtained through a 137 MW
load increase/decrease (corresponding to 5% increase/decrease
of the system’s total power consumption). For each operating
condition, we consider four different disturbances, (i) outage of
90 MW synchronous generation at bus 684, (ii) loss of a total
of 101.4 MW power consumption connected to buses 1-5, (iii)
three-phase fault at bus 1238, cleared by tripping a transmis-
sion line connected to the faulted bus after 100 ms. (iv) loss of
the VSC-HVDC link East-West Inter-connector (EWIC) that
connects the AIITS to Great Britain’s transmission system.

The system is integrated with the BEM, the ITM, the
2S-DIRK, and the BDF2, for 15 s and using h = 0.1 s.
In every simulation, the disturbance is applied at t = 1 s.
Table II shows, for each method and scenario, the magnitude
of the error of the rotor speed ωr,2 with respect to the reference
trajectory, cumulated for the simulation period. Moreover, the
values of |ds| for the mode to which ωr,2 mostly participates
in, i.e. the MCEM, are given in Table IV. The values in
Table IV are determined considering the base case operat-
ing condition. Results further confirm the suitability of the
proposed approach in providing indicative and useful, yet not
absolute measures of the numerical distortion introduced by
TDI methods. Of course, repeating the SSSA when the oper-
ating condition is varied, would allow a further improvement
of the precision of the measures derived.

TABLE IV: AIITS: |ds| for h = 0.1 s, MCEM.

BEM ITM 2S-DIRK BDF2

|ds| 0.810 0.058 0.029 0.208

Overall, results support the validity of the proposed ap-
proach in providing indicative accuracy measures for the non-
linear system model.

V. CONCLUSIONS

The paper provides a framework based on SSSA to study
the numerical distortion introduced by explicit and implicit
integration schemes when applied for the simulation of power
system dynamics. The proposed framework is implemented
using a general formulation which covers the most important
families of integration methods, including RK and linear
multistep methods. Results indicate that adopting the proposed
approach, one is able to provide useful upper time step bounds
to satisfy certain accuracy criteria, as well as to compare
different methods in a fair way.

Future work will exploit the proposed framework to provide
new insights on the accuracy of multirate methods, e.g. see
[24]–[26], as well as to evaluate the ability and limitations
of common integration schemes to accurately cope with time
delays and stochastic processes.

APPENDIX

A. Proof of Proposition 1
We consider (16) and for simplicity we use the notation

∂η
∂xt = A0, ∂η

∂xt−hAh, ∂η
∂xt−a1h

= Aa1h, ∂η
∂xt−a2h

= Aa2h,

. . ., ∂η
∂xt−aρh

= Aaρh. Let also ε > 0, so that ai = ciε,
ci ∈ N∗. We set:

y
[0]
t = ∆xt

y
[h]
t = ∆xt−h

...

y
[a1h]
t = ∆xt−a1h

y
[(a1+ε)h]
t = ∆xt−(a1+ε)h

y
[(a1+2ε)h]
t = ∆xt−(a1+2ε)h

...

y
[a2h]
t = ∆xt−a2h

y
[(a2+ε)h]
t = ∆xt−(a2+ε)h

...

y
[aρ−1h]
t = ∆xt−aρ−1h .

and

y
[0]
t−h = ∆xt−h = y

[h]
t

y
[h]
t−h = ∆xt−2h = y

[2h]
t

y
[2h]
t−h = ∆xt−3h = y

[3h]
t

...

y
[a1h]
t−h = ∆xt−(a1+ε)h = y

[(a1+ε)h]
t

y
(a1+ε)h
t−h = ∆xt−(a1+2ε)h = y

[(a1+2ε)h]
t

...

y
[a2h]
t−h = ∆xt−(a2+ε)h = y

[(a2+ε)h]
t

y
[(a2+ε)h]
t−h = ∆xt−(a2+2ε)h = y

[(a1+2ε)h]
t

...

Aaρhy
[aρ−1h]
t−h = Aaρh∆xt−aρh .

The last matrix equation can be written as:

Aaρhy
[aρ−1h]
t−h =−A0∆xt −Ah∆xt−h −Aa1h∆xt−a1h

− . . .−Aaρ−1h∆xt−aρ−1h . (43)

or, equivalently,

Aaρhy
[aρ−1h]
t−h =−A0y

[0]
t −Ahy

[h]
t −Aa1hy

[a1h]
t

− . . .−Aaρ−1hy
[aρ−1h]
t . (44)

Using the above matrix equations we arrive to system (17)
which is equivalent to (16), where:

Ẽ =

[
I 0
0 Aaρh

]
, (45)

Ã =

[
0 I

−A0 A†

]
, (46)
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and:

A† =
[
−Ah 0 · · · −Aa1h 0 . . . −Aaρ−1h 0

]
,

where 0, I are the zero and identity matrix with proper
dimensions.

yT

t =[(y
[0]
t )T (y

[h]
t )T (y

[2h]
t )T . . . (y

[a1h]
t )T

(y
[(a1+ε)h]
t )T . . . (y

[a2h]
t )T (y

[(a2+ε)h]
t )T

. . . (y
[aρ−1h]
t )T] .

(47)

Then, we have that the pencils saρhAaρh + . . .+ sa2hAa2h +

sa1hAa1h + shAh + A0, sẼ − Ã of systems (16), (17)
respectively, have exactly the same finite eigenvalues, see [9].
The proof is completed.

B. Propositions 2 and 3

Proposition 2. Recall the general form of the Möbius trans-
formation [27]:

s =
az + b

cz + d
, a, b, c, d ∈ C, ad− bc 6= 0 . (48)

If (48) is applied to the matrix pencil sE−A, it leads to the
family of pencils:

z(aE− cA)− (dA− bE) . (49)

Proof. First, the restriction ad − bc 6= 0 in (48) is necessary
since, if ad = bc then s is constant, which is not possible.
Then, recall that the eigenvalues of the pencil of (7) are the
solutions of (8), whereby applying (48) we get:

det
(az + b

cz + d
E−A

)
= 0 ,

or, equivalently, by using determinant properties:

det((aE− cA)z − (dA− bE)) = 0 ,

i.e. the characteristic equation of a linear system with pencil:

z(aE− cA)− (dA− bE) . (50)

The proof is completed. Then, we may obtain as special
cases the matrix pencils of the FEM, for a = 1, b = −1,
c = 0, d = h; the BEM, for a = 1, b = −1, c = h, d = 0;
the ITM, for a = 1, b = −1, c = 0.5h, d = 0.5h.

Note that the family of pencils (49) corresponds to a family
of linear discrete-time systems in the form:

(aE− cA)∆xt = (dE− bA)∆xt−h . (51)

Proposition 3. Consider system (7) with ad− bc 6= 0. If one
of the following conditions holds:

a = b and c = −d , or a = −b and c = d , (52)

then for a stable equilibrium state of (7), the magnitude of
the spectral radius of the matrix pencil of each discrete-time
system in the form of (51) is < 1.

Proof. For a stable equilibrium state of (7), we have Re(s) <
0, for every finite eigenvalue s ∈ C and hence s + s̄ < 0,

where s̄ is the complex conjugate of s. Substituting s =
(az + b)/(cz + d) we get:

az + b

cz + d
+
az̄ + b

cz̄ + d
< 0 ,

or, equivalently:

(cz̄ + d)(az + b) + (az̄ + b)(cz + d) < 0 ,

or, equivalently, by taking into account that z̄z = |z|2:

2ac|z|2 + 2bd+ (ad+ bc)(z̄ + z) < 0 ,

This means that the set {Re(s) < 0, ∀s ∈ C} maps to the set
{ac|z|2 + bd + (ad + bc)Re(z) < 0, ∀z ∈ C}. If we apply
conditions (52), we have ac+ bd = 0 and ad+ bc = 0 which
is equal to bd/ac = −1. Hence, the above relation takes the
form:

2ac|z|2 < −2bd ,

and consequently |z| < 1. Thus, through (7) and under the
conditions (52), the set {Re(s) < 0, ∀s ∈ C} maps to the
set {|z| < 1, ∀z ∈ C} and consequently the stability of this
continuous time system can be studied through the stability of
the discrete-time system (51). Hence for a stable equilibrium
state of (7), we obtain that the magnitude of the spectral radius
of the pencil of each discrete-time system in the form of (51)
is < 1. The proof is completed.
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