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1. Introduction

Singular systems of linear differential/difference equations are inherent in many physical, engineering, mechanical, and
financial models. For instance, in finance, we cite the well-known input-output Leontief model and its several important
extensions, see [1,2]. Another application of a singular system is the constrained mechanical and robotic system described
in [3]. Singular systems also appear in control theory, see [4], in macroeconomics, see [5], circuit theory, see [6], and in
the modeling of power systems, see [7-9].

We consider the following system:

EY'(t) = AY(t). (1)

where E,A € R™™, Y : [0, +00) — R™ !, The matrices E, A can be non-square (r # m) or square (r = m) with E singular
(detE = 0). With Y’ we denote the first order derivative of Y(t). By applying the Laplace transform £ into (1), we get:

Ec{Y'(t)} = AC{Y(t)} .
or, equivalently,
E(sZ(s) — Yo) = AZ(S) .

where s € C, Yo = Y(0) initial condition of (1). If we assume that Yy is unknown we can use an unknown constant vector
C € R™! and give to the above expression the following form:

(SE — A)Z(s) = EC .
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From the above equation, it is obvious that the polynomial matrix SE — A plays an important role in the study of (1),
especially regarding the existence of solutions and its stability properties.

We will refer to SE — A as the pencil of system (1). Hence, a matrix pencil is a family of matrices sE — A, parametrized
by a complex number s, see chapter 12 in [10].

Notice that we have two cases:

(a) The first case is r = m and det(sE — A) to be equal to a polynomial with order less than m, i.e. det(sE — A) is not
identically zero; In this case the pencil SE — A is called regular pencil.

(b) The second case is r = m, or r = m with det(sE — A) = 0, V arbitrary s € C; In this case the pencil SE — A is called
singular pencil.

In the case of (a), since the pencil is assumed regular, we have that det(sE — A) # 0. Then Z(s) can be defined and
consequently Y(t) always exists and is given by Y(t) = £~ '{(sE — A)"'EC}. Hence in the case of a regular pencil, the
solution of (1) always exists. In the case of (b), if r < m there are at least m — r unknown functions and m equations.
Hence Z(s) cannot be defined uniquely. In this article, we consider the case that the pencil sE —A is regular with E singular.
This type of pencil, see [11], chapter 12 in [10,12], has finite eigenvalues which are the zeros of the function det(s — A),
and eigenvalues s that tend to infinity. The existence of an infinite eigenvalue in pencils of singular systems can be seen if
we write the generalized eigenvalue problem in the reciprocal form EX = s~'AX. If E is singular with a null vector X, then
EX = Op,1, so that X is an eigenvector of the reciprocal problem corresponding to the eigenvalue s~! = 0, i.e. s — oo.
We consider now the pencil sE — A of system (1). If we replace s into the characteristic equation ]sE - A| = 0 with

_az+b

s=f(z)=——, a,b,c,deC, ad—bc #0, 2
f(z) p—— a (2)
we get
‘az+bE—A‘:O,
cz+d

or, equivalently, by using determinant properties
|(aE — cA)z — (dA — bE)| = 0,

which is the characteristic equation of a linear dynamical system
(aE — cA)Y'(t) = (dA — BE)Y(t),

with pencil
z(aE — cA) — (dA — bE).

The transformation (2) used is called Mébius transformation, or linear fractional transformation, and the restriction in this
definition is necessary because if ad = bc then s is constant, which would disqualify such transformation here, see [13].
If we consider the transformation (2) fora=c=d = 1,and b = —1, we get

FY' =GY, (3)
with pencil
Fz — G,
where we set
F=E—-A, G=A+E.
The equilibrium state in system (1) is asymptotically stable if the finite eigenvalues of SE — A belong in the set {Re(w) <
0, VYw € C}. By applying the transformation (2) fora =c =d =1, and b = —1 to this set we get:
z—1 n % -1
z4+1 z+41
or, equivalently,
Z+D)z-—1)+(Z—-1)z+1) <0,

or, equivalently, by taking into account that zz = |z|*:

<0,

|z] < 1.
Hence the set {Re(w) < 0, VYw € C} maps to the set {|z]| < 1, Vz € C}through (2)fora=c=d=1,andb = —1,i.e.
z—1
s = .
z+1
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Remark 1.1. If Re(s) < 0 holds for all finite eigenvalues of SE — A, then system (1) is asymptotically stable. However, from
the above discussion we can conclude that by using the linear fractional transformation fora = c =d = 1, b = —1,
system (1) is asymptotically stable if for all finite eigenvalues of zF — G, |z| < 1 holds, where zF — G is the pencil of (3),
and

s+1

z=-— (4)

Remark 1.2. To sum up the steps of the mathematical formulation so far, firstly we assumed the singular system (1), then
we applied the transform (2) for a = ¢ = d, b = —1 an arrived at system (3). The Md6bius transformation is used for the
particular choice of parameters a, b, ¢, d because this will allow us in Section 3 to study the stability of system (1) and
its robustness through the set {|z| < 1, Vz e C} instead of the set {Re(w) < 0, VYw € C}.

Remark 1.3. The contributions of the article are the following. In Section 2 we prove that the right and left eigenvectors
of the pencil of system (3) can be explicitly represented by only having insight on the eigenvectors of the pencil of (1),
and without resorting to any further processes of computations. In Section 3 we provide our main results, whereby using
a linear fractional transformation and matrix pencil techniques we provide a practical test for (1) and its robustness by
requiring only the knowledge of the invariants of its pencil. Finally, numerical examples, including practical applications,
are given in Section 4 to support our theory.

Throughout the paper, with 0; we will denote the zero matrix of i rows and j columns, with T the transpose tensor,
and with I, the identity matrix m x m. Finally, let B, € C""*"1, B,, € C"2*"2, . . B, e C"*™, With the direct sum

By, ©®Bn, ®--- @® By,
we will denote the block diagonal matrix:

blockdiag[ B, Bn, ... B ].
2. Mathematical background and notation

This section introduces some preliminary concepts and definitions from matrix pencil theory, which are used through-
out the paper. The connection between (1), and (3), i.e. between their matrix pencils sE — A, zF — G, is a consequence
of the linear fractional transformation. The notions of their relation are qualified algebraically in terms of relationships
between the strict equivalence invariants of the associated pencils. These relationships are summarized below. Let s;,
j=0,1,...,v,and z;,j =0, 1, ..., v be finite eigenvalue: Fora,c,d=1, b= —1:

° Ifs—>0thenz—>—§=1;

oIfs— ocothenz — —¢=—1;

o Ifs—> sjthenz — _C‘Sijsib = _ijjll;
° lfz—>0thens—>§:—1;

o Ifz— ocothens — ¢ =1;

o Ifz — z thens — C;jis =Z%;

Hence:

e If 1, co are eigenvalues of SE — A then v = v;
e If 1is an eigenvalue of SE — A but co is not then v = v — 1;
e If 1 is not an eigenvalue of SE — A but co is then v = v + 1.

As already mentioned in the previous section, in this article we assume that the pencil is regular. Then invariants of the
following type are possible to exist:

e An eigenvalue equal to 1 of algebraic multiplicity po;
¢ v finite eigenvalues s; # 1 of algebraic multiplicity p;,j =1,2,..., v, j“:o pi="r;
e an infinite eigenvalue of algebraic multiplicity q; where p + ¢ = m.

If the pencil sSE — A of system (1) is regular, then from its regularity there exist non-singular matrices P, Q € C™™ such
that

PEQ = IPO @Ip @Hqs PAQ :]po @]p @Im (5)

where po +p+q=m, Jp, € CPo*Po, J, € CPP are Jordan matrices related to the eigenvalue that is equal to 1 and of the
rest of the finite eigenvalues respectively, see [10,14], and Hge C9*9 is a nilpotent matrix with index q,, constructed by
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using the algebraic multiplicity of the infinite eigenvalue. The matrices P and Q contain the eigenvectors of SE — A. Let

PPO

P=| P |. Q=[Q & & ].
Pq

with P,, € CPo*™ P, € CP*™ P, € C™™, and, Q,, € C™P, Q, € C™P, Q; € C™1, where P, P,, P; are matrices
with rows the left eigenvectors of eigenvalue 1, rest of the finite eigenvalues, the infinite eigenvalue respectively, where
Qpy» Qp, Qg are matrices with columns the right eigenvectors of eigenvalue 1, rest of the finite eigenvalues, the infinite
eigenvalue respectively.

We consider now system (3). Then invariants of the following type are possible to exist:

e U + 1 finite eigenvalues of algebraic multiplicity p;, j =0, 1, ..., ;
e an infinite eigenvalue of algebraic multiplicity g.

where Zﬁ:o pj = P and p + g = m. For a regular pencil, there exist non-singular matrices P, Q € C™™ such that:
IBFQ = Fw:Iﬁ@I:I'a 136@ = Gw:jﬁ@la (6)

Let

with P; € CP*™, P; € C7*™, and Q; € C™P, Q; € C™*¥, where P;, P; are matrices with rows the left eigenvectors of the
finite eigenvalues, and the infinite eigenvalue respectively, where Q;, Q; are matrices with columns the right eigenvectors
of the finite eigenvalues, and the infinite eigenvalue respectively.

Theorem 2.1. We consider the systems (1), and (3). Let P, be the matrix whose rows are the m linear independent eigenvectors
of sE — A, and Q be the matrix whose columns are the m linear independent eigenvectors of sE — A. Furthermore, let P, be the
matrix whose rows are the m linear independent eigenvectors of sF — G, and Q be the matrix whose columns are the m linear
independent eigenvectors of sF — G. The matrices P, Q are defined in (5), and the matrices P, Q are defined in (6). Then:

f’w[ij] G=[0 & ] (7)

Proof. We consider P, Q as defined in (5). By substituting the transformation
Y(t) = QZ(¢).

into (1), and by multiplying by P we obtain
PEQZ'(t) = PAQZ(t).

Then by taking the form of Q in (5), and setting

Zy, (1)
Z(t) = Zp(t) s
Zy(t)

with Z,,(t) € CPox1, Z,(t) € CP*1, Zy(t) € C?!, we arrive at three subsystems of (1):
Z, () = JpyZp(£);
Z,(t) = JpZy(t);
HyZ)(t) = Z,(0).
The first two subsystems have solutions:

Zy,(£) = €r0'Z, (0),  Z,(t) = €' Z,(0).
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For the third subsystem let g, be the index of the nilpotent matrix Hy, i.e. Hg* = 0q4,4. Then if we repeatedly multiply by
H, we obtain the following matrix equations:
HoZ (t) = Zy(t)
HZZ]/(t) = HeZ,(t)
3 i _ 2711
HqZé/ (t)= HqZ‘;(t)

HiZ{(t) = H3Z)'(1)

w—1(qx—1 ) F’q*—ZZ qsx—2
Jiqq Zq( )(t) — g q( )( )
”q*z qx qu*f‘lz qsx—1
q q( )(t) — g ((] )(t)

qx—1 qs—1
(X Hizf) + Hgez0e) = (Y Hizd(©)) + Z4(e),
i=1 i=1

or, equivalently, by taking into account that Hg* = 04,4, at the solution
Zq(t) = 0g.1.

By taking the sum of the above equations we arrive at

By using the solutions of the three subsystems, we obtain:

erZ,,(0)
YO =) =[ & Q& Q]| ez |,
0g,1
or, equivalently,

Y(t) = Qp,e0'Z,,(0) + QeP'Z,(0),

or, equivalently,

Y(O)=[ Q Q |eror'Z,.,(0),

Zp, (0
where €' = e’ @ eb!, and Z, ,,(0) = (0

2,0) is a constant vector. This means that [ Qp, Q, ] is the matrix
that contains the py + p linear independent eigenvectors of the finite eigenvalues of sE — A which is the pencil of (1). Let
us now consider the system (3):
FY' = GY,
or, equivalently,
(E—A)Y' = (E +A)Y.
We apply the transformation
Y(t) = QZ(t).
into (3), and multiply by P:
P(E — A)QZ'(t) = P(A + E)QZ(t),
or, equivalently, by using (5):
[y — Jpo) ® (I, — Jp) @ (Hg — 1)1Z(t) =

[Upo +1po) @ Up + 1) ® (Ig + HIZ(t),
whereby setting

Z(t) =
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with Zpo(t) € CPox1, Zp(t) e Crx1, Zq(t) e €71, and using the above written notations we arrive at three subsystems
of (3):

(Ipo _JPO)ZF/IO(t) = UP[) + IPO)ZPO(t);
(I = Jp)Z)(t) = Up + ))Zp(t);

(Hg — I0)Z}(t) = (g + Hg)Z(t).

Note that the matrix I, — J,, has only zeros in its diagonal. Furthermore, the matrices I, — J,, H; — I are both invertible
since they are either upper triangular matrices or diagonal with all elements in their diagonal non-zero. The solution of
the first subsystem is:

Zpo(t) = Opy,1-

This can be proved similarly to the relevant part of the proof above for the solution of the system HqZ‘;(t) = Z,(t). The
two other subsystems have solutions:

Zy(t) = eP'Z,(0), and Z,(t) = €'Z,(0),
respectively, where
jp = (Ip _]p)il(]p + Ip)v ]q = (Hq - Iq)quq + Hq)'

By using the solutions of the three subsystems, and the notation for Q in (5) we obtain:

0po.1
V=20 =[ & & Q]| %0 |.
ELYA())

or, equivalently,

Y(t) = QeP'Z,(0) + Qe Z,(0),
or, equivalently,

?(f) = [ Q ]elp+qt2p+q(0)a
where eb+at = bt @ e, Z,, (0) = [ ?Eg; :| This means that [ Q, Q; ] is the matrix that contains all linear
independent eigenvectors of the finite eigenqvalues of sF — G which is the pencil of (3). Hence

G=[0 ]

Let us now consider the system
FTYT =G'Y7,

or, equivalently,
Y'F =YG,

or, equivalently,
Y'(E —A) = Y(E + A),

where ¥ € C*™. We apply the transformation
Y(t) = Z(¢)P

into the above system, and multiply by Q:
Z'(OP(E — A)Q = Z()P(A+ E)Q.,

or, equivalently,
Z/(0)(py — Jpo) ® (I — o) ® (Hg — Ig)] =
Z(6)Upo + Ip) ® Up + 1) ® g + Hy)],
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whereby setting

()= [ Zp(t) Zp(t) Zy(t) ]
with fpo(t) e C'*po, Z,(t) e Cl*p, 2q(t) € €', and using the above written notations we arrive at three subsystems:

23 ()Iny = Jpg) = Zpo(E)py + Ipo )
Zy(0)Iy —Jp) = Zo(t)Up + Ip):

Z()(Hq — Ig) = Zy(t)Iq + Hy).

As already written the matrix I, — J,, has only zeros in its diagonal. Furthermore, the matrices I, — J,, H; — I are both
invertible since all elements in their diagonal are non-zero. The solution of the first subsystem is

Zpy(£) = 01 .

This can be proved similarly to the relevant part of the proof above for the solution of the system HqZ[I(t) = Z,(t). The
two other subsystems have solutions:

Z,(t) = Z,(0)eP", and Zy(t) = Z,(0)el,
respectively, where
jp = Up + Ip)Up _]P)_la jq = (Iq + Hq)(Hq - Iq)_1~
By using the solutions of the three subsystems, and the notation for P as written in (5) we obtain:

PPo
i'(t)=2(r)P=[o,,o,1 AC) equz,(O)] P, |,
Pq

or, equivalently,
V(t) = Z,(0)eP P, + Z,(0)ela'p,,
or, equivalently,

A A P,
Y(t)zzp+q(0)e'n+qf[ P” ]

q

where e+t = et @ ot Zp44(0) = [ Z,(0) Z,(0) ] This means that [ g’; is the matrix that contains the all left linear

independent eigenvectors of the finite eigenvalues of sF — G which is the pencil of (3). Hence:

~ P,
Py = L
b [ Pq ]
The proof is complete.
Remark 2.1. In (7) the matrices 135,, Qp are defined from eigenvectors related to eigenvalues of the pencil sE — A of system
(1). Hence, it is worth mentioning that these matrices are not uniquely defined since only the span of the eigenvectors,

i.e. eigenspace, is unique; any basis of this is a basis of eigenvectors to the given eigenvalue and may form the rows of
the matrix.

3. Robust stability

In this section we present our main result. In general, if we consider the perturbed system of (1):
(E+ AE)Y'(t) = (A + AA)Y(t), (8)

and its pencil s(E + AE) — (A 4+ AA), where AE, AA € R™™, then its eigenvalues are given by solving the following
characteristic equation:

|S(E + AE) — (A + AA)| = 0.
By applying the transform (2) we get
‘ az+b
cz+d

(E+AE)—(A+AA)' —o,
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or, equivalently, by using determinant properties
|(az + b)(E + AE) — (cz + d)(A + AA)| =0,
or, equivalently,
|(a(E + AE) — c(A+ AA))z — (d(A + AA) — b(E + AE))| =0,
or, equivalently,
|((aE — cA) + (aAE — cAA))z — ((dA — bE) + (dAA — bAE))| = 0,
which is the characteristic equation of the system
(F+ AF)Y'(t) = (G + AG)Y(1),
where
AF = aAE —cAA, AG=dAA—bAE.
We focus on the following perturbed system:
EY'(t) = (A + AA)Y(t). 9
Theorem 3.1. Consider system (1) with a regular pencil, and finite eigenvalues of type s;, j = 0, 1, ..., v of algebraic multiplicity

pj. Let this system be asymptotically stable. Then, after a perturbation accordingly to (9), the system will retain its asymptotic
stability if for all finite eigenvalues s; € C of the pencil of (1):

si+1
i+ +2p.K <1, j=0,1,...,v.
Sj -1
where K = Hgf?""‘ , D« = MaX1<j<,p; and P, Q are defined in (5).
1

Proof. We consider (1), and the perturbed system (9). If we apply the linear fractional transformation (2) to these two
systems fora = ¢ = d = 1, b = —1, we arrive at system (3), and its perturbed system (8) for AE = Op , with z;,
j =20,1,...,7, being a finite eigenvalue of the pencil zF — G, and z a random finite eigenvalue of the pencil of the
perturbed system. Let U € C™*! be an eigenvector of Z, i.e. Z(F — AA)U = (G + AA)U, or, equivalently,

(3F — G)U = EU.

where E = (z + 1)AA. We consider the matrices P, Q as defined in (6). By substituting the transformation U = QW into
the above expression, W € C™!, we obtain

(F — G)QW = EQW,

whereby, multiplying by P, and taking into account the definition of F,,, G,, in (6), we get
(2F,, — G, )W = PEQW.

While Z # z; we have det(zF,, — G,,) # 0 and
W = (3F, — G,,)"'PEQW.

Thus

sk Gyl | @) 05
(Fu = ) _[ pOa,ﬁp (zH; iq’fz)_l ]

By using (6), the matrix PEQ can be written as
s Ps |~ - - PsEQ; P3EQ;
PEQ=[;:|E[Q{: Qa]=[ SEs 5 94]

q

W;
Wy

[ ]=| @ G B ]
W 05 5 (ZHq—Ia)*l ~éééﬁ ~QEQII w; |

Moreover, let W = |:
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From the above equation we get
Wi =@ —Jp) " [ PEQ PEQ; ] [ o ] :
which can be written as
(][ w78 R
0g.1 0g.5 043 05 03 Wi

. 5~ . , =~ QU T [ w;
Let Q1, Q. be left inverses of Q;, Qg respectively. From the transformation U = QW we get [ QU ] = [ w; and thus

QU = Wj. Hence by using this observation into the above expression we get

I R | el | P
0g,m 0g.5 0g.q 05  Oag Q
Furthermore

[ Q ]UH _ ”[ Gl —J5)™" O ][ PEQs  PpEQ; ]Q—luu

Om,g 05,5 03,5 Oz  0Ogg
and
I A e
Om.g _ 0.5 03,3 05 Oag
Sup vl =P i ’

since U # 0y, 1 is an eigenvector of Z. Hence

[ Q }H:H[ @ —J5(z) " 055 }[ 5EQs  PpEQg ]Q—l
0g.m 055 05,5 0z5  Ogg

where
0 B[ 2 e a1 [ M o
L 0gp 033 0g.m 0g.m
Thus
- )
Og.m 035 059 0g.m
or, equivalently,
[ Q i _ (21{,—]‘5)71},5
L O[],m _ Ofy,m ’
or, equivalently,
o ) = e -nr ||
< @G =T p
i Of],m ] — (zp .]p) qum ?

or, equivalently,

e
q,m
-] A

where (ZI; — J;)™' = [2l5, — J5, 217" @ [2l5, — J3,(22)17' @ - - @ [2l;, — J5,(2:)17" and, see [15]:

1 1
-z (z-z) G-z
0 . L

- = = 5z . ~

215, — J(z)] 7" = o (=5 , Vi=0,1,...,7.
0 0 -

Z=zj
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We have assumed asymptotic stability for (1), i.e. the real part of each finite elgenvalue of the pencil of (1) is negative,
and consequently |z;| < 1. Let M; = =R By taking the norm ||-||; of (ZI; —jp) we have

pj

~ 7 71 ~
H (zl; — J] H = max < maxM;p; < (max M;)p..
1 1<j=<v = |2 _Zj| J 1<j<d

where maxi<j<,p; = p. Equivalently:
1 1
= =
(maxi<j<sM;)ps H [ZIﬁ _Jl_)]—l‘ ]

)

or, equivalently,
Mini<i<y |Z — z; 1
<j<i ‘ J‘ <

T

or, equivalently,
mini<i<y |Z — z; H|: i|
Sj=v ]| < 1

S

From (7) we have that P; = [ ,and Q; = [ @ Q; ] However, as already written, the real part of each finite

-ﬁ! =0
3 l'l'lz

eigenvalue of the pencil of (1) is negatlve and consequently 13,3 =P, Qp = Q since the system does not have an eigenvalue
equal to 1. Hence

5
min |z —z| < :
15jsp "o,
Note that the norm |-||; can be replaced with ||| .
Let Z,, z, be eigenvalues such that |Z,| = Z|, z. = maxy<j<; |z|- Then

||2:] = 2| < pu(1 + |2 K
or, equivalently,
7| — ps(1+ |2.))K < |2.] < |3| +p(1 + |2 K.
The right inequality can be written as
|2/ (1 = p.K) < [g] + p.K,
or, equivalently,
5] < |zi| + p.K
T 1—pK

Thus if |z’ |+p ;} < 1, or, equivalently,

Sj-l-

WK <1 =01

5
then |Z*| < 1, i.e. the pencil of the perturbed system (9) will have all its finite eigenvalues with negative real part. The
proof is complete.

Remark 3.1. There have been many significant studies on the stability of systems of differential equations, including cases
with singularity problems, see [1,4,12,16,17]. The stability test in Theorem 3.1 is practical and easy to use and requires
insight on the spectrum of the pencil.

Remark 3.2. To apply the condition proposed in Theorem 3.1, knowledge of the spectrum of the pencil sE — A is required.
The standard numerical method for solving the corresponding generalized eigenvalue problem is the QZ algorithm,
see [18], which is known to have a computational complexity of O(n?) floating point operations, and works with dense
matrices.
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Theorem 3.1 can be further developed by using methods that measure the participation of system eigenvalues in system
states, see [19]. In addition it can be used to further develop robust stability tests for singular linear systems of fractional
differential equations, see [20,21], other type of fractional operators such as the fractional nabla applied to difference
equations, see [22], and other type of non-linear advanced differential equations, see [23,24].

4. Numerical examples
In this section we first apply the main results of this article to a small linear singular system of differential equations.
Then, we further exploit our theory with a simple application in electric power engineering. In particular, we consider a

synchronous generator connected to a bus of constant frequency and voltage.

4.1. Numerical example 1

We consider system (1) with
6 -3-400 5 45 5 553
2 1 130 4 -2 -2 52
E=]10—-4-710]|,A= 9 35 5 551
4 1 070 -2 —-35 -3 -850
0 0 00O 15 0 0 05
The matrix pencil SE — A has 3 finite eigenvalues s; = —0.5, s, = —1, s3 = —2, and 2 infinite eigenvalues s4, s5. Since

all finite eigenvalues have algebraic multiplicity equal to 1, we have p, = 1. If u;, w; are the right and left eigenvector,
respectively, associated with the eigenvalue s;, then we have:

0 —0.25 0 0 —0.1
-1 1 1 0 -1
up, = 1 , Uy = -1 , Uz = —0.5 , Ug = 0 , Us = 0.6 s
0 0 0 0 0.2
0 0.75 0 -1 -0.19
and
-0.387" —0.67" r-0337" 0.037" 0.037"
—1 —1 1 -1 —1
wi=|-023|,w,=| 02| ,w3=| 011 | , wa=| —0.16 | , ws= | —0.16
0 0 0 0.45 0.45
0.68 0.72 | —0.22 —-0.34 0.41
Therefore, the matrices Q and P are as follows:
0 —0.25 0 0 -0.1 [ —0.38 —1 —0.23 0 0.68
-1 1 1 0 1-1 —-0.6 —1 0.2 0 0.72
Q= 1 -1-05 0 06| ,P=|-033 1 0.11 0 —0.22
0 0 0 O 0.2 0.03 —1 —0.16 0.45 —0.34
0 0.75 0 -1 —-0.19 | 0.03 -1 -0.16 0.45 0.41
4.1.1. Case 1

Consider a perturbation of A to be given by the following matrix:

0 0.09 0 0.11 0.06

0 0-004 00.04

AA = 0 0.07 0 0.11 0.02
-004 0-006 0 O

030 O 0 0 O

The perturbed right-hand side coefficient matrix is thus:

5 459 5 5.61 3.06

4 —2 -2.04 -5 2.04

A+ AA = 9 3.57 5 5.61 1.02
—2.04 —3.50 —3.06 —8.5 0

15.30 0 0 0 5

From Theorem 3.1, K is determined as follows:
PAA

= IPAAl,

Q=1

=0.0432,



12 L. Dassios, G. Tzounas and F. Milano / Journal of Computational and Applied Mathematics 381 (2021) 113032

1.5 T
-- 5
1.0 i
.... S9
SH - s i
0.5 3 ]
!
0.0+ i
5 i
% ] A
< R T atiatinlid
] S PP PP P PR PPREPRITTELLEA
—1.5F
1 e SR
—2.5 L L L L L L L |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 .
Parameter A x107°

Fig. 1. Real part of finite eigenvalues as parameter A varies.

where

0.22 —-0.04 0.04 —0.04 —0.07
0.20 —0.05 0.04 —-0.07 —0.07
PAA=| —-0.12 -0.01 0.01 —0.01 —-0.04 |,
0.11 -0.01 0.01 —-0.01 —0.04
—-0.07 —-0.02 —-0.04 —-0.02 0.02

400 -2 0
412 =3 0
Q'=| -300 —247 -1
000 5 0
022 4 0

The stability condition, as derived in Theorem 3.1, is checked here for all the finite eigenvalues of the system. Note

1
* 1 ‘ + 2p.K. The

that, for the sake of simplicity, in the remaining of this section we will use the notation C(s;) = ‘zj
values of C(s;) for j = 1, 2, 3, are as follows: !
e For s; = —0.5 we have
C(s1) =0.4198 .
e For s; = —1 we have
C(s2) = 0.0865 .
e For s3 = —2 we have

C(s3) = 0.4198 .

Since C(s;) < 1 holds for all the finite eigenvalues, the perturbed system is stable, according to Theorem 3.1. Indeed,
carrying the eigenvalue analysis confirms that the perturbed system is stable. In particular, the pencil SE — (A + AA) has
3 finite eigenvalues §; = —0.433, S, = —1.117, 53 = —1.999, and 2 infinite eigenvalues Sy, Ss.

4.1.2. Case 2
Consider now the perturbation of A to be given by the following matrix:

0 —45» 00O

0 021200
AA=| 0 0 00O
0 0 00O
0 0 00O

where A is a parameter. Obviously, for A = 0, we get a zero perturbation matrix. A ramp of A is simulated until an
eigenvalue is past the imaginary axis and the system is driven to instability. The real parts of the system finite eigenvalues
with respect to the parameter A are depicted in Fig. 1. The value of C(s;) as the value of A increases is shown in Fig. 2.
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Fig. 2. C(s;) of finite eigenvalues as parameter A varies.
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Fig. 3. One machine, two-bus power system.

Since the real part of s3 is kept negative, we have that C(s3) < 1. For sy, s, we have C(sq) > 1, C(s3) > 1 only when the
real parts Re(s1), Re(s;), become positive.

4.2. Numerical example 2

In transient stability analysis,! a power system model is formulated as a set of non-linear differential-algebraic
equations [26]. The stability of a stationary point can be examined by carrying out an eigenvalue analysis of the linearized
system around this point. Power systems are, in particular, a relevant application of the theorems presented in this paper,
since a linearized power system can be described as a singular system in the form of (1). Note also that linear differential-
algebraic equations are just a special case of singular systems in the form of (1) for E = I, 0, 4. The scheme of the power
system considered in this example is depicted in Fig. 3. It consists of a synchronous generator (SG), which is equipped
with an automatic voltage regulator (AVR). The AVR is a feedback control system used to stabilize the generator’s voltage
by adjusting the current in its rotor field winding. Finally, the SG is connected to a bus of constant frequency and voltage,
through a transmission line. The non-linear equations of this system are as follows:

e SG (electro)mechanical equations:
S/Qb =w— ws,
2Ho =t — 7o ,

0= —7 + Yaig — Yqia ,

where § is the rotor angle; w the angular speed; 7. the electrical torque; iq, i are the direct (d-) axis and quadrature
(g-) axis current; 14, ¥4 the d-axis and g-axis magnetic flux, respectively. Note that d- is the axis of the machine’s
rotor dc magnetic field winding, while the axis q- is 90 electrical degrees ahead with respect to the d-axis. In addition,

1 “Transient stability analysis” refers to the study of the ability of power systems to maintain synchronism and recover a stationary condition
after a perturbation [25].
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£2p = 314.16 rad/s is the nominal synchronous angular frequency; ws; = 1 pu (rad/s) (in per unit with respect to £2;)
the reference angular frequency; 7, = 0.6 pu (MN-m) the mechanical torque; H = 2.5 MWs/MVA the inertia
constant.

e SG electrical and magnetic equations:

0=1vYg+vg,
0=—%4+vg,
Téoé:q = —e; — (xg — x)ig + v ,
T;Oéfi = —e;+ (X — x;)iq ,

/ /.
O:vq—eq~|—xdld,
J

0 = vg — €y — Xgiq ,
where vg, vq the d-axis and g-axis voltage; e}, e; the d-axis and g-axis transient electromotive force; vy is the field
voltage; Ty, = 8 s the d-axis and T;, = 0.6 s the g-axis transient time constant; x; = 1.7 pu (£2) the d-axis,
X = 1.7 pu (£2) the g-axis synchronous reactance; x; = 0.3 pu (£2) the d-axis, xé = 0.5 pu (£2) the g-axis transient
reactance.
e SG interface with the network and network equations:
0 = —py + vgig + quq s
0 = —qn + vgig — vy4iq ,
0= vhsin((S — Oh) — Vg,
0 = vpcos(§ — 6p) — vg
0 = —ph + V781 — VAVK(ZLCOSOH + bLSinbhe)
0 = —qn — v7b; — v Vk(gLSiNOh — brCOSOK)
0 = —px + v 8L — vnvk(8COSOh — bysinbiy) ,
0 = —qi — viby — v U(gLSinbp + b cosOiy)
where v;, i = h, k, is the voltage at bus i; p;, q; the active and reactive power injection at bus i; 6; is the voltage
angle at bus i; O = 6, — 6k; g1 + jbr = (r. +jx;)~', where r, = 0.01 pu, x; = 0.15 pu (£2) the series resistance and
reactance, respectively.
e Constant voltage model equations:
0=wvko— vk,

0 = 6ko— 0O,

where vy o = 1.01 pu (kV) the initial voltage at bus k, 6, o = 0° the initial voltage angle at bus k.
e AVR equations:

Tai)rl = Ka(vref —Un — Ur2 — f)fo/Tf) — Ur1,

Tf i)r2

—Ufo/Tf + v,
Tef}f = —Kevf — VUr,
Tri)m =Up —Un,

where v;q, vrp, vy are state variables and v = 1.1 pu (kV) is the voltage reference; T. = 0.002 s the
measurement time constant; K, = 0.5, T, = 1 s the field circuit integral deviation and time constant; K, = 10,
T, = 0.2 s are the amplifier gain and time constant; K; = 0.09, Ty = 0.3 s the stabilizer gain and time constant,
respectively.
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Box L.

The linearized system matrices A, E are as follows (see A in Box I):

0 0 0 00O O 0O O OO0OO0OTUO0ODTDO
0 0 0O0OOO O O O0OO0OTO0OTGO0ODTO
0 0 0O 0OOO O OOO0OTUO0OTG OO
0 0 0 0OOO O OOOTUO0OTG OO
0 0 0 OO OO OOO0OTUO0OTG OO
0 0 0 0OO 0 0O 0 O O0OO0OTUO0ODTDO
0 0 00O O OOOTUOTUOTU OO
0 0 0O0OOO O O O0OO0OTUO0OTGO0ODTDO
0 0 0OOOO O OOO0OTUO0OTG OO

0
0
0
0
0
0
0
0
0

0

0.003 0 O

0 0 06 0 0 O

0

0

0

0 0 0.002

0

0

0.2

03 0 0 000 0 0 0 0 00 00O

0
0
0
0
0
0
0
0
0
0
0
0
0

0

—0.09

0

0 0 0 OO 0 0O OO O0OO0OTUO0ODTDO
0 0 00O OOOOTUOTUOT OO
0 0 0O0OOO O O O0OO0OTO0OTGO0ODTPO
0 0 0O0OOO O OOO0OTUO0OTGODTDO
0 0 0O OO OO O0OOO0OTUO0OTGODTDO
0 0 0 OO O O O0OOO0OTUO0OTG OO
0 0 0 0O0O O 0O O OO0OO0OTUO0ODTUDO
0 0 000 O OO0OO0OOTUOTU OO
0 0 0O OO OO OOO0OTUO0OTGODTDO
0 0 0 0OOO O OOO0OTO0OTG OO
0 0 0 OO OO OOO0OTUO0OTG OO
0 0 0 0O0O O 0O OO O0OO0OTUO0ODTDO
0 0 00O O OOOTUOTUOTG OO

—0.68 £+ 11i, s5 =

., S23. Since the algebraic multiplicity of all finite eigenvalues

—3.689, S6,7

—0.238 £ 0.335], s34

—500 and infinite eigenvalues sg, S1g, . .

The pencil SE — A has 8 finite eigenvalues s,

—4.281+£3.884i, sg
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—0.23 —-1.0 —0.05 0 0 —0.01 0 0 —0.05 —0.01 0.08 —0.14 —0.01 —0.01 —0.05
—0.28 0.13 -1.0 0 0 0 0 0 0.02 —0.02 0.09 —0.02 —0.09 —0.06 0.02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.14 —0.06 —0.09 1.0 0 0 0 0 —0.02 —0.02 0.11 —0.12 —0.06 —0.05 —0.03
Q= 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 —-1.0 0 0 —0.05 0 0.02 —0.03 0.06 0.04 —0.11
0 0 0 0 0 0 —-1.0 0 0 0 0 0 0 0 0.02
0 0 0 0 0 0 0 -1.0 0 0 0 0 0 0 0
0.14 —0.06 —0.08 —0.01 0 0 0 0 1.0 —0.03 0.01 0.1 —0.46 —0.32 0.73
—0.99 0.44 0.59 0.04 0 0.03 0 0 0.24 1.0 —0.74 0.88 0.34 0.27 0.34
0.28 —0.13 —0.17 —0.01 0 —0.01 0 0 —0.07 0.09 —-1.0 0.07 0.08 0.06 —0.03
—0.23 0.1 0.14 0.01 0 0.01 0 0 0.06 —0.07 —0.2 —0.99 0.01 0 —-0.11
0.78 —0.35 —0.47 —0.03 0 —0.02 0 0 —0.19 0.24 0.67 —0.78 0.96 0.04 —0.73
0.57 —0.25 —0.34 —0.02 0 —0.02 0 0 —0.14 0.17 0.49 —0.57 —0.57 —-1.0 0.27
1.0 —0.44 —0.6 —0.04 0 —0.03 0 0 —0.24 0.3 0.85 —-1.0 —-1.0 0.07 —0.36
L 0.03 —0.01 —0.02 0 0 0 0 0 —0.01 0.01 0.03 —0.03 —0.03 0 —-1.0
Box II.
is 1, we have p, = 1. Regarding the matrices P, Q, we have
p=| 7 ]e-la ol
q
where (see Q; in Box Il and P, in Box III)
[ o —0.5+0.05i —0.5— 0.05i 0 0 044 —0.14—028i —0.14+0.28i |
0 —0.02i 0.02i 0 0 —0.01 0 0
0 —0.01i 0.01i 0 0 0.04 0.12+0.25i 0.12 — 0.25i
0 —0.02+0.09 —0.02—0.09i 0 0 094 —0.08—0.13i —0.08+ 0.13i
0 0.23-0.03i  0.23 + 0.03i 0 0 —02 0.114+022i 0.11—0.22i
0 0.29—0.05i  0.29 + 0.05i 0 0 —0.47 0.1+40.18 0.1 — 0.18i
—1.0 —0.014+0.01i —0.01—0.01i 0 0 0.15  0.02+0.05i  0.02 — 0.05i
0 0 0 0.13+0.13i 0.13—0.13i —0.05 —0.73+0.27i —0.73—0.27i
—0.1 —0.03—0.04i —0.03+ 0.04i 1.0 ~1.0 0.15 —0.28—0.17i —0.28 +0.17i
0 0 0 0.01+0.08i 0.01—0.08i —0.15 —0.03i 0.03i
0 —0.14—001i —0.14+0.01i 0 0 —0.04 —0.01i 0.01i
Q= 0 0 0 0 0 0 0 0
0 —0.01+0.01i —0.01—0.01i 0 0 0.14  0.02+0.05i  0.02 — 0.05i
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 —0.11-007i —0.11+0.07i 0.01i —0.01i —1.0 —0.14—0.33i —0.14+ 0.33i
0 0.96+0.03i  0.96 — 0.03i 0 0 0.09 0 0
0 —029+0.05 —0.29—0.05i 0 0 047 —0.1—0.18i —0.1+0.18i
0 023—0.03i  0.23+0.03 0 0 —02 0.114022i 0.11-0.22i
0 —0.78+0.05i —0.78 —0.05i 0 0 081  0.05+0.12i  0.05—0.12i
0 —053—0.09 —0.53-+0.09i 0 0 —0.95 —0.04—0.11i —0.04+ 0.11i
0 —0.97-003i —0.97+0.03i 0 0 —0.09 0 0
0 —0.06+0.07i —0.06—0.07i —0.01i 0.01i 1.0 0.15+0.33i 0.15—0.33i
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 007 —10 0 0 0 0.01 0 0 0 -1.0 022 016 071 —05
0 1.0 0.01 0 0 0 0.02 0 0 0 001 —092 -—048 —008 —0.93
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1.0 0 —007 0 0 009 -099 0 0 0 0 0
P = 0 0 0 —099 0 006 001 0 -009 -1.0 0 0 0 0 0
0 —001 003 002 0 —10 016 0 —09 0 -01 -008 —006 002 0.5
0 001 001 015 0 098 003 0 -1.0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1.0 0 0 0 0 0 0 0
0 011  —0.06 0 0 0 1.0 0 0.04 0 067 058 04 —011 -10
0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0
-10 007 —0.04 0 0 —009 —059 0 —0.11 0 043 037 026 —007 —064
083 009 —0.04 0 0 -011 -071 0 013 0 052 045 031 —009 —0.77
0 —087 001 0 0 0 0.02 0 0 0 001 —092 —048 —008 —0.93
0  —005 —096 0 0 0 —001 0 0 0 1.0 -022 -016 —-071 05
0 —001 003 0 0 0 0 0 0 0 —09 -053 10 -10 —001
L 0o —003 004 0 0 0 —001 0 0 0 076 -10 09 086  0.36
Box IIL
0 —0.98 +0.02i —0.98 — 0.02i 0.63 — 0.37i 0.63 4+ 0.37i —-1.0 —-0.21+0.03i —-0.21-0.03i 7
0 —0.02i 0.02i —0.01+0.02i —0.01— 0.02i 0.05 0.05 — 0.09i 0.05 4+ 0.09i
0 0 0 0 0 0 0.06i —0.06i
0 0 0 —0.03+0.04i —0.03 — 0.04i 0.09 0.07 — 0.04i 0.07 + 0.04i
0.14 0.03i —0.03i —0.12 —0.02i —0.12 4 0.02i 0.09 —0.07 4 0.08i —0.07 — 0.08i
0.27 —0.02i 0.02i —0.18 — 0.06i —0.18 + 0.06i 0.07 —0.18 4+ 0.09i —0.18 — 0.09i
—1.0 0 0 0.59 + 0.35i 0.59 — 0.35i 0 0.89 — 0.05i 0.89 + 0.05i
0 0 0 —0.04+0.04i —0.04 — 0.04i 0 —0.08 4 0.01i —0.08 — 0.01i
0 0 0 —0.06 — 0.03i —0.06 + 0.03i 0 —0.09 —0.09
0 0 0 —0.4+0.41i —0.4 — 0.41i 0.01 0.95 + 0.05i 0.95 — 0.05i
0 0 0 0 0 0 0 0
P = 0 0 0 0 0 0 0 0 .
0.1 0 0 —0.06 —0.04i —0.06+0.04i —0.02 —0.1-0.01i —0.140.01i
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
—-0.71 0 0 0.38 + 0.3i 0.38 — 0.3i 0.11 0.71 + 0.08i 0.71 — 0.08i
0 0.03i —0.03i —0.01 —0.01 0.01 0 0
0.18 0.02i —0.02i —0.14 —0.04i —0.14 4 0.04i 0.08 —0.1140.08i —0.11 —0.08i
0.22 —0.02i 0.02i —0.15—-0.04i —0.15+ 0.04i 0.08 —0.14 4+ 0.1i —0.14 — 0.1i
0.27 —0.03i 0.03i —0.18 — 0.05i —0.18 4 0.05i 0.1 —0.16 +0.06i —0.16 — 0.06i
—0.14 —0.02i 0.02i 0.13 4+ 0.01i 0.13 — 0.01i —0.11 0.05 — 0.04i 0.05 + 0.04i
0 0 0 0 0 0 0
—0.1 0 0.06 + 0.04i 0.06 — 0.04i 0.02 0.1+ 0.01i 0.1 —0.01i
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Table 1
Values of C(s;) for K; = 10.1.

Eigenvalue C(sj)
s12 = —0.238 £ 0.335i 0.6503
s34 = —0.68 £ 11i 0.9898
s5 = —3.689 0.5743
67 = —4.281 = 3.884i 0.7764
sg = —500 0.9968
Table 2
Values of C(s;) for K; = 11.

Eigenvalue C(sj)
s1.2 = —0.238 £ 0.335i 0.6577
s34 = —0.68 £ 11i 0.9972
s5 = —3.689 0.5817
s¢.7 = —4.281 £ 3.884i 0.7838
sg = —500 1.0042

We now consider a perturbation of the AVR amplifier gain. The perturbed gain is K, = 10+ 10A. Then, the perturbation
matrix AA is:

- O 0O O OO0 oo

o
=

OOOOOOOOOOOOOOSOOOOOOOO
=

AA =

(=N elelelelBeoBoNeoloBoloNeolBoloNeoloBolho el ool o Ne]
(=N elelelelNelNoNoeNoe oo Ne oo NoeNoeNBoloNoe oo NeNel
[N elelelelBeBoNoeoloeBoloNeololoNeoloBolhoNeoloB oo Ne]
(=N elelelelNeloNeNe oo Ne oo Noe o Nolo ool oo Ne]
[N elelelelBeBoNoleBoloNeololoNeoloBoloNeloB oo Ne]
(=N elelelelNelNoNeNoe oo Ne oo Noe e NBolo ool oo Nel
(=N elelelNelNelBo ol Bo o NelNoloNeoNoBoloNe ol oNoNe]
[=NelelelNelNelNoNeNe oo Ne oo No e No oo el oo Ne)
(=N elelelelNolBoNoeNoeBoloNeNoloNoeNoeNBoloNoe ol oNeNe]
[=NelelelNeNeNeNeNe e NoNe e oo e No oo el oo Ne)
(=N elelelelNolBoNoeNoe oo Ne oo NoeNoeNBoloNoe ol oNeNe]
[=NelelelNeNeNeNeNe oo Ne e NoNoe e No oo el oo Nel
(=N elelelNelNolBoNoeNoe oo Ne oo NoeNoeNBolo ool oo Nl
[=NelelelNeNeNoNeNe e NoNe oo Noe e No oo e oo Nel
(=N elelelNelNolBoNoeNoeBoloNoeNoloNoeNoeNBolo oo oo Ne]
[=NelelelNeNeNeNeNe oo Ne oo Noe e No oo e oo Nel
(=N elelelelNelBo NN oo Ne oo NoeNoeNolo oo oo Ne]
[=NelelelNeNeNeNeNe e NeNe e No oo No oo e lo e Nel
(=N elelelelNelBoNoeNoeBoloNoeNoloNoeNoeNBoloNoe ol oNeNe]
[=NelelelNeNeNeNeNe e NoNe e NoNoe e No oo e lo oMol
(=N elelelelNelNoNoeNoe oo Ne oo NoeNoeNoloNoe ol oNeNe]

[=NelelelNeNelNoNeNe oo Ne Mool

4.2.1. Case 1

For A = 0.01, K, = 10.1, the values of C(s;) for the finite eigenvalues of the system are summarized in Table 1. As it
can be seen C(s;) < 1 for all finite eigenvalues and therefore, according to Theorem 3.1, the perturbed system is stable.
Indeed, eigenvalue analysis shows that the rightmost eigenvalues of the perturbed system are §; , = —0.237 + 0.336i.

4.2.2. Case 2

For p = 0.1, K; = 11, the values of C(s;) for the finite eigenvalues of the system are summarized in Table 2. From this
table we notice that C(sg) > 1, which indicates that Theorem 3.1 is inconclusive for the stability of the perturbed system
for » = 0.1. Eigenvalue analysis of the perturbed system shows that the rightmost eigenvalues are §; , = —0.233+0.344;,
which indicate that this system is stable.

In electric power engineering, the study of the stability properties of a power system around an operating point
is known as small-signal stability analysis (SSSA). SSSA indicates if the system is stable when subjected to “small”
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disturbances. In this context, the condition obtained in Theorem 3.1 allows identifying whether a given disturbance is
sufficiently small so that the system linearization can be considered to remain valid.

Conclusions

In this article we provide a practical test for robust stability for a class of singular linear systems of differential
equations. This test requires only the knowledge of the invariants of the initial system and can be used without resorting
to any further processes of computations to obtain invariants of any other perturbed system. Two numerical examples
provide further insight. The second case study, in particular, discusses a practical application of the theoretical results
provided in this paper. A further extension of this work is to apply this method into singular linear systems of fractional
differential equations. The concept of stability of fractional differential equations is different than that of the systems
considered in this article and we believe that our proposed method can provide interesting results also for the robustness
of this type of systems. Finally, we will dedicate future work to study the compatibility of our approach with sparse matrix
numerical methods.
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