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Abstract—This paper focuses on power flow analysis through
the lens of the Newton flow, a continuous-time formulation
of Newton’s method. Within this framework, we explore how
quantized-state concepts, originally developed as an alternative to
time discretization, can be incorporated to govern the evolution of
the Newton flow toward the power flow solution. This approach
provides a novel perspective on adaptive step-size control and
shows how state quantization can enhance robustness in ill-
conditioned cases. The performance of the proposed approach
is discussed with the ACTIVSg70k synthetic test system.

Index Terms—Ill-conditioned power flow, continuous Newton
approach, convergence analysis, quantized state system.

I. INTRODUCTION

A. Motivation

Power flow analysis is a fundamental task in power system
studies, and several numerical methods are available for its
solution, e.g., see [1]–[6]. Among them, methods based on the
continuous Newton framework [1], [2] have shown promising
robustness for ill-conditioned cases. Within this framework,
Newton iterations are interpreted as the numerical integration
of a dynamical system whose equilibrium corresponds to
the power flow solution. Building on this interpretation, this
paper explores how concepts from quantized-state methods –
originally proposed as an alternative to time discretization –
can be incorporated to enhance performance and robustness
for challenging ill-conditioned and poorly initialized cases.

B. Literature Review

From a numerical viewpoint, power flow problems can
be classified into four categories: well-conditioned, ill-
conditioned, bifurcation point, or unsolvable. Standard New-
ton’s method is effective in well-conditioned cases. Saddle-
node bifurcations, on the other hand, are commonly detected
using continuation methods [7], while maximum loadability
optimal power flow formulations [8] offer an alternative ap-
proach.

This paper focuses on ill-conditioned cases, where a solution
exists but standard approaches like Newton’s method and fast
decoupled power flow (FDPF) [6] struggle to converge. Such
cases are commonly addressed using robust Newton variants,
e.g., see [9]. The continuous Newton framework generalizes
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these approaches by reformulating the power flow equations
into a continuous-time dynamical system, the Newton flow
[10]. This allows the solution to be obtained through numerical
integration using any explicit or implicit discretization scheme
[1], [2]. For implicit schemes, each integration step requires
the solution of a nonlinear algebraic system via Newton
iterations, resulting in a double (inner/outer) loop structure. In
this context, adaptive time stepping has also been explored as
a means of improving efficiency, e.g., by updating the step size
based on local truncation error estimates in explicit schemes
or on the convergence of the inner loop in implicit ones.

It is natural to ask whether discretization paradigms be-
yond conventional time-stepping can be incorporated into this
framework and provide enhanced performance and robustness.
The main idea of this paper is that such an alternative paradigm
can be provided by quantized state system (QSS) methods
[11], [12]. These methods replace time discretization with state
quantization, triggering updates only when a state changes by
a prescribed amount, the quantum. Recent work has provided
additional insight into QSS through a duality perspective, in
which time is allowed to evolve as a state-dependent variable
[13]. In this paper, we explore how the QSS logic can be
embedded into the Newton flow to realize event-driven step-
size adaptation for ill-conditioned power flow analysis.

C. Contribution

The main contribution of this paper is to introduce QSS
concepts into the continuous Newton framework for power
flow analysis, enabling state-event-driven step-size adaptation
for solving the associated Newton flow. In addition, we pro-
vide a matrix-pencil–based analysis of explicit and implicit
discretizations of the Newton flow, offering insight into their
local convergence properties. The proposed approach shows
potential to achieve improved performance and robustness for
ill-conditioned and poorly initialized cases.

D. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II reviews the continuous Newton framework and analyzes
the local convergence of its explicit and implicit discretizations
under varying step sizes. Section III introduces the QSS
concept and its use for event-driven step-size adaptation.



Section IV presents the case study based on the ACTIVSg70k
test system. Finally, conclusions are drawn in Section V.

II. CONTINUOUS NEWTON APPROACH FOR
POWER FLOW ANALYSIS

This section presents an overview of the continuous Newton
approach applied to power flow analysis. We first outline its
formulation and describe explicit and implicit variants. Then,
we evaluate local convergence around the power flow solution.

A. Formulation

Power flow analysis refers to solving the nonlinear system:

0 = g(yo) (1)

where yo ∈ Rn is the column vector of system variables,
including voltage magnitudes and angles at PQ buses, reactive
power and voltage angles at PV buses, and active/reactive
power at the slack bus. The functions g(yo) ∈ Rn represent
the corresponding power flow constraints across the network.

The main idea of continuous Newton’s methods is that the
solution of (1) coincides with the steady state of the Newton
flow, i.e., of the continuous system:

gy y′ = −g(y) (2)

where gy is the Jacobian matrix gy = ∂g/∂y. In other
words, power flow analysis is translated into the problem
of numerically integrating (2) until its equilibrium yo is
reached. Moreover, since only the steady state is of interest,
the trajectory of y itself is irrelevant – what matters is whether
a discrete approximation of (2) converges and how quickly.

The simplest among all discretization schemes is the for-
ward Euler method (FEM). Application to (2) gives:

0 = gyk
(yk+1 − yk) + hk g(yk) (3)

where hk is the integration step size. Obtaining yk+1 requires
factorizing the matrix gyk

at each step.
Observe that (3) corresponds to the k-th iteration of New-

ton’s method with damping factor hk ∈ (0, 1]. In particular,
setting hk = 1 recovers standard Newton’s method, which is
effective when gyk

is well-conditioned, whereas hk < 1 yields
robust Newton’s method, useful to improve convergence in
cases where gyk

is ill-conditioned.
A limitation of (3) is that its numerical stability margin

shrinks as gyk
becomes ill-conditioned. This forces small step

sizes to achieve convergence. In this context, implicit schemes
such as the backward Euler method (BEM) become attractive
[2], as they remain stable even for arbitrarily large step sizes
and overdamp fast dynamics, offering improved robustness.
Applied to the Newton flow (2), BEM reads:

0 = gyk+1
(yk+1− yk) + hkg(yk+1) = ϕ(yk+1) (4)

System (4) is solved at each step using Newton iterations:

y
[i+1]
k+1 = y

[i]
k+1 − ϕ−1

y (y
[i]
k+1)ϕ(y

[i]
k+1) , i ∈ N . (5)

Thus, BEM leads to a double-loop algorithm: an inner loop,
where, for a given k, (5) is solved to compute yk+1 from

yk; and an outer loop, where, once yk+1 is obtained, k is
advanced and the process is repeated until |yk+1 − yk| < ε.
When this condition is satisfied, (2) has reached steady state,
i.e., y′ = 0, and (1) is solved. Further implementation details
of (5) are provided in the case study of Section IV.

B. Local Convergence Analysis

We discuss the local convergence of FEM (i.e., robust
Newton’s method) and BEM in the neighborhood of the power
flow solution. To this end, the discrete-time mappings (3), (4)
are linearized around yo, and their convergence is assessed
using linear stability theory [14], [15].

FEM: Linearizing (3) around yo yields:

0 = gyo
(ỹk+1 − ỹk) + hk gyo

ỹk (6)

where ỹ = y − yo. Equivalently:

ỹk+1 = (1− hk)ỹk (7)

where, in exact arithmetic, g−1
yo

gyo
= I and this also holds

numerically as long as gyo
is well-conditioned. The corre-

sponding z-domain matrix pencil [16] zI − (1 − hk)I yields
a repeated eigenvalue z = 1 − hk with multiplicity n. The
stability condition |z| < 1 gives the bound 0 < hk < 2.

BEM: Linearizing (4) around yo yields:

0 = gyo
(ỹk+1 − ỹk) + hk gyo

ỹk+1 (8)

Equivalently:

(1 + hk)ỹk+1 = ỹk (9)

For well-conditioned cases, the corresponding z-domain ma-
trix pencil (1 + hk)zI − I has a repeated eigenvalue z =
1/(1 + hk) with multiplicity n. Since |z| < 1 holds ∀hk > 0,
the method is locally stable around yo for any positive step.

Figures 1 and 2 show the local convergence behavior of
FEM and BEM, respectively, as the step size hk varies. The
results are obtained by first mapping from z- to s-domain:

s = log(z)/hk = α+ jβ (10)

Under well-conditioned cases, Fig. 1a shows that, as expected,
convergence of FEM is monotonic for 0 < hk < 1, with
the fastest decay rate obtained for hk = 1; as hk increases
beyond 1, behavior becomes oscillatory, and for hk > 2, the
method diverges. For BEM, Fig. 2 confirms that convergence is
monotonic ∀hk > 0, with the decay rate decreasing gradually
as hk increases. This implies that, near yo, a larger hk leads
to slower local convergence.

FEM is also known to be sensitive to ill conditioning. In
particular, when gy is ill-conditioned, its inversion ampli-
fies numerical errors, while residual inaccuracies accumulate
across iterations, thus introducing a non-negligible distortion
to the local mapping around yo. To qualitatively show this
effect, we consider an illustrative model of the distorted pencil
as zI− (1−hk+ϵ)(1+η)I, where η accounts for imprecision
in the factorization of gyo

; and ϵ represents the accumulated
residual error during Newton iterations. For example, with



(a) Well-conditioned case. (b) Ill-conditioned case.

Fig. 1: Local convergence region, FEM.
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Fig. 2: Local convergence region, BEM.

η = 2.33 and ϵ = −0.7, the local convergence region contracts
to 0 < hk < 0.6, as shown in Fig. 1b. In contrast, the implicit
nature and strong numerical damping properties of BEM
greatly reduce the impact of numerical and residual errors,
thereby offering enhanced robustness. In practice, robustness
also depends on the step-size selection. In the following, BEM
is equipped with a state-event-driven rule for adapting hk.

III. QSS-BASED STEP CONTROL

In this section, we integrate QSS concepts into the numerical
solution of the power flow problem through the Newton flow
formulation (2). In the family of QSS methods, differential
equations are solved by quantizing the state variables rather
than discretizing time. The simplest member of this family is
the first-order scheme, QSS1 [11]. Consider the test equation:

y′(t) = f(y(t)) , y ∈ R (11)

In QSS1, the derivative y′(t) is evaluated using a piecewise-
constant input signal q(t) that approximates y(t):

y′(t) = f(q(t)) (12)

where q(0) = y(0). The signal q(t) updates only when y(t)
changes by a fixed quantum ∆q:

q(t) =

{
y(t) if |y(t)− q(t−)| ≥ ∆q

q(t−) otherwise

Between two consecutive quantization events, the right-hand
side of (12) remains constant, resulting in y(t) being piecewise
linear. Let tk denote the time of the k-th event, where q(tk) =
y(tk). For t ∈ [tk, tk+1), the state evolves as:

y(t) = y(tk) + (t− tk)f(y(tk)) , t ∈ [tk, tk+1) (13)

The next event occurs at t = tk+1, when the deviation between
y(t) and y(tk) reaches the quantum:

|y(t)− y(tk)| = ∆q (14)

Substituting (13) in (14) at t = tk+1, we get hk|f(y(tk))| =
∆q. Equivalently, the step size hk = tk+1 − tk is:

hk = ∆q/|f(y(tk))| (15)

We now extend the same idea to the Newton flow (2). The
quantized variables are updated according to:

qj(t) =

{
yj(t) if |yj(t)− qj(t

−)| ≥ ∆q

qj(t
−) otherwise

where j is the index of vector y, j ∈ {1, . . . , n}. To compute
the derivative of y(t) at the time instant of each quantization
event, the quantized signal q(t) is substituted into (2), yielding:

gy(q(t))y
′ = −g(q(t)) (16)

y′(t) is then approximated as:

y′ = f(q(t)) = −[gy(q(t))]
−1g(q(t)) (17)

From this, the step size that determines when each variable
reaches its next quantization event can be estimated as:

hk,j = ∆q/|fj(y(tk))| (18)

where fj is the j-th equation of (17). After computing hk,j for
each equation using (18), we then select the smallest value:

hk = min{hk,j} , j ∈ {1, . . . , n} (19)

as the global step size. Combination of (18) and (19) pro-
duces a QSS-based rule for adaptive step-size selection that
integrates naturally with the BEM discretization of the Newton
flow discussed in Section II. Compared with classical adaptive
strategies, such as truncation-error controllers or iteration-
count heuristics, which typically require tuning multiple pa-
rameters, the proposed mechanism is simpler to configure, as
it requires only the choice of ∆q. Moreover, because the step
size is explicitly tied to controlled state variations, the same
principle could be leveraged to handle discrete events such as
PV–PQ switching.

IV. CASE STUDY

This section presents simulation results based on the AC-
TIVSg70k synthetic test system [17]. The system model
includes 70,000 buses, 88,207 transmission lines and trans-
formers, and 10,390 generators. All simulations are carried out
in Dome [18], on a computer equipped with an Intel Xeon E3-
1245 v5 processor, 16 GB of RAM, running a 64-bit Linux OS.

In the following, we first present base-case results for
the original, properly initialized and well-conditioned system.
We then examine performance and robustness under modi-
fied, poorly-initialized conditions. We consider three reference
solvers, namely FEM, FDPF, Runge-Kutta 4 (RK4) [2], and
four BEM-based variants, including one fixed-step implemen-
tation, one with heuristic step adaptation, and two incorporat-



ing the proposed QSS-based step control, as summarized in
Table I.

TABLE I: Power flow solver configurations considered.

Notation Step size Description

FEM Fixed Robust Newton
FDPF Fixed Fast decoupled power flow method
RK4 Adap. Runge Kutta 4

BEM-J1 Fixed BEM with one inner loop
iteration (imax = 1)

BEM-J Adap. BEM with with multiple inner
loop iterations (imax > 1)

BEM-J1-QSS Adap. BEM-J1 with hk governed by (19)
BEM-J-QSS Adap. BEM with imax > 1 and hk

governed by (19)

Unless otherwise stated, the initial step size is set equal to
1 in all configurations. For BEM-based solvers, the Hessian
term arising in the computation of ϕ−1

y in (5) is neglected [2].
Moreover, for QSS-based schemes, ∆q is set at 20, while a
maximum hmax

k = 8000 is imposed.

A. Base-Case Results

We begin by evaluating the performance of the solver
configurations summarized in Table I in the base case, corre-
sponding to the original, well-initialized ACTIVSg70k system.
The results are reported in Table II and indicate that all
methods converge successfully. Among the reference solvers,
FEM exhibits the best overall performance. Furthermore, the
QSS-based methods, BEM-J-QSS and BEM-J1-QSS, achieve
a significant reduction in the number of iterations compared to
their respective counterparts, BEM-J and BEM-J1, resulting in
a modest speedup. Among all tested solvers, BEM-J1-QSS has
the fastest overall convergence. For completeness, we note that
RK4 adapts its step based on an estimate of the local truncation
error, while BEM-J adjusts it heuristically according to the
convergence rate of the inner Newton loop.

TABLE II: Base-case statistics.

Method Main loop Inner loop CPU time [s]

FEM 25 – 5.89
FDPF 12 – 6.93
RK4 19 – 10.24
BEM-J1 25 1 4.61
BEM-J 24 139 18.69
BEM-J1-QSS 11 1 2.82
BEM-J-QSS 7 126 17.39

Figure 3 shows the iteration trajectory of the voltage phase
angle at bus 2 obtained with FEM and BEM-J. Both methods
are run under fixed steps in this figure to allow a direct
comparison. For FEM, iterations converge fastest at hk = 1,
become slower and non-oscillatory for hk < 1, oscillatory for
1 < hk < 2, and diverge when hk > 2. In contrast, BEM-
J converges to the power flow solution without oscillating
for all tested step sizes. These results are consistent with the
analysis of Section II-B. Figure 4 shows the trajectory and

step-size evolution of BEM-J-QSS. It can be seen that BEM-J-
QSS requires fewer iterations than BEM-J, since hk increases
according to (19) as state-derivative magnitudes decrease and
the system approaches the steady state.
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Fig. 3: Well-initialized case: FEM and BEM-J iterations.
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Fig. 4: Well-initialized case: BEM-J-QSS iterations.

B. Performance for Poorly Initialized Conditions

We examine the performance of the methods in Table I
under poorly initialized conditions. Starting from the base
case, the initial voltage angles θinit are uniformly scaled by
a factor α to deteriorate the initialization.

The results obtained for a scaling factor of α = 1.35 are
summarized in Table III. As shown, this scaling is sufficiently
large to cause divergence of the reference solvers. In contrast,
both BEM-J-QSS and BEM-J1-QSS converge faster than their
respective counterparts, BEM-J and BEM-J1.

TABLE III: Poorly-initialized-case statistics, α = 1.35.

Method Main loop Inner loop CPU time [s]

FEM Diverge – –
FDPF Diverge – –
RK4 Diverge – –
BEM-J1 25 1 4.56
BEM-J 23 135 18.02
BEM-J1-QSS 12 1 3.67
BEM-J-QSS 7 102 16.54

The iteration trajectories of BEM-J1 and BEM-J1-QSS for
α = 1.35 are shown in Figure 5a. Further increasing the
scaling factor provides additional insight into their robustness.
In particular, for α = 1.66, as shown in Fig. 6a, BEM-J1
diverges at iteration 62 due to an ill-conditioned Jacobian
matrix, whose condition number increases by approximately
104 times compared with its previous value. This issue does
not occur in BEM-J1-QSS.
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Fig. 6: Iterations of θbus2 with BEM-J1 and BEM-J1-QSS, α = 1.66.

To further assess robustness, each method is tested on a set
of 500 cases obtained for scaling factors uniformly distributed
in the range α ∈ (1, 2]. The percentage of converging cases for
all methods in Table I is reported in Table IV. As shown, the
reference methods (FEM, FDPF, and RK4) exhibit low overall
convergence rates under poorly initialized conditions. BEM-
J and BEM-J-QSS achieve the highest convergence rates,
while BEM-J1 and BEM-J1-QSS show reduced robustness due
to their inner loop approximation. The number of iterations
required by each method as α varies within (1, 2] is shown
in Fig. 7. Each curve terminates at the largest value of α for
which the method maintains convergence.

TABLE IV: Converging cases under scaled initial voltage angles.

Method Convergence [%] Method Convergence [%]

FEM 39.80 BEM-J 82.25
FDPF 32.78 BEM-J1-QSS 68.32
RK4 33.40 BEM-J-QSS 82.28
BEM-J1 65.93
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Fig. 7: Iterations of θbus2 for all methods, α ∈ (1, 2].

V. CONCLUSION

This paper integrates QSS concepts into the continuous
Newton framework for power flow analysis. By leveraging
QSS-based state-update logic, the proposed approach enables
event-driven adaptive step-size control, improving both con-
vergence speed and robustness in ill-conditioned cases. Simu-
lation results show that it accelerates convergence relative to
fixed-step and heuristically tuned BEM variants and enhances
robustness when combined with BEM-J1. Future work will
examine the use of QSS-based event handling within the
same framework to manage switching events during iterations
triggered by operational limit violations.
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