
1

Unified Numerical Stability and Accuracy Analysis
of the Partitioned-Solution Approach

Georgios Tzounas, IEEE Member, and Gabriela Hug, IEEE Senior Member

Abstract— This paper focuses on the Partitioned-Solution Ap-
proach (PSA) employed for the Time-Domain Simulation (TDS)
of dynamic power system models. In PSA, differential equations
are solved at each step of the TDS for state variables, whereas
algebraic equations are solved separately. The goal of this paper
is to propose a novel, matrix-pencil based technique to study
numerical stability and accuracy of PSA in a unified way. The
proposed technique quantifies the numerical deformation that
PSA-based methods introduce to the dynamics of the power
system model, and allows estimating useful upper time step
bounds that achieve prescribed simulation accuracy criteria. The
family of Predictor-Corrector (PC) methods, which is commonly
applied in practical implementations of PSA, is utilized to
illustrate the proposed technique. Simulations are carried out
on the IEEE 39-bus system, as well as on a 1479-bus model of
the All-Island Irish Transmission System (AIITS).

Index Terms— Time-Domain Simulation (TDS), Partitioned-
Solution Approach (PSA), Predictor-Corrector (PC) methods,
Heun’s Method (HM), numerical stability, matrix pencils.

I. INTRODUCTION

A. Motivation
Despite recent advances in non-linear stability theory and

computational methods for Lyapunov functions, e.g. see [1]–
[3], the most successful method to assess the stability of elec-
tric power systems under large disturbances to date is running
numerical Time-Domain Simulations (TDSs). Nevertheless,
fast and accurate stability assessment through TDSs is not a
trivial problem, due to the complexity of dynamics and the
large scale of power systems. These challenges will be further
exacerbated in the future for a variety of reasons, including
the increasing penetration of converter-based resources, the
increase in electric energy demand, etc. The focus of this paper
is on the numerical stability and accuracy of a TDS approach
that is being widely utilized both in industry and academia
as a means of providing fast calculations in dynamic power
system studies, namely the partitioned-solution approach [4].

In general, a TDS consists in employing a proper numerical
scheme to compute the time-response of a given dynamic
model under known initial conditions. In power system short-
term stability analysis, the dynamic model of the system is
conventionally formulated as a set of non-linear Differential-
Algebraic Equations (DAEs), as follows [5]:

x′(t) = f(x(t), fy(t)) ,

0 = g(x(t),y(t)) .
(1)
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In (1), x(t) : [0,∞) → Rν are the states of dynamic
devices connected to the power network (like conventional
and converter-based generation, dynamic loads, automatic con-
trollers, etc.); and y(t) : [0,∞) → Rµ are algebraic variables
(like bus voltage magnitudes and phase angles, bus power
injections, auxiliary variables that define control set-points,
etc.); f : Rν+µ → Rν and g : Rν+µ → Rµ are column
vectors of non-linear functions that define the differential and
algebraic equations, respectively; 0 is the zero matrix of proper
dimensions. Finally, discrete dynamics (like actions of control
limiters, switching devices, etc.) do not appear in (1) because
they are modeled implicitly through if-then rules, i.e., each
discontinuous change leads to a jump from (1) to another DAE
set of the same form [6].

Various numerical schemes have been reported in the liter-
ature for the solution of (1). An important component of each
scheme is the strategy it adopts to handle the equations, in par-
ticular whether differential and algebraic equations are solved
together at once, or their solution is in some way alternated.
The former approach is referred to as simultaneous, while the
latter as partitioned [4], [7]. A second important component
is the type of integration method employed, i.e. implicit or
explicit. With this regard, the main advantages of implicit over
explicit methods are their properties of numerical stability and
their ability to deal with system stiffness [5]. Yet, these ad-
vantages are moderated by the need for frequent full Jacobian
matrix factorizations, which increase the computational cost
of TDS per time step. On the other hand, explicit methods
are computationally cheaper per time step; however, they give
rise to large errors and numerical instability unless a small-
enough time step is used which, in turn, also increases the total
computational time. Finally, a third important component is
whether the solution is obtained by exploiting parallelization
algorithms, e.g. see [8]–[10].

The problem of choosing a good numerical integration
scheme is one of finding a good compromise between speed
and accuracy/stability. In practice, implicit numerical methods
are most commonly combined with the simultaneous approach.
Methods employed in this context include the Trapezoidal
Method (TM), backward Euler, Theta, diagonally implicit
Runge-Kutta, Hammer-Hollingsworth, etc., see [11]–[14]. On
the contrary, explicit methods are implemented with the
Partitioned-Solution Approach (PSA). In this context, very
simple methods such as the Forward Euler Method (FEM)
are avoided due to their poor performance, with most tools
choosing to combine an explicit method with some accuracy
refinement technique, such as Predictor-Corrector (PC) itera-
tions [4], [5]. However, even with accuracy refinement, PSA-



based solutions are still prone to numerical issues, which,
once again, limits the ability to use large time steps. This has
often driven efforts for the definition of device models that are
numerically robust when combined with a given commercial
PSA-based solver. In this vein, we refer to [15], [16] on the
development and parameterization of power converter models
for systems with low short-circuit strength.

The main goal of this paper is to propose a novel technique
to study in a unified way the stability and precision of
numerical integration of power system models with PSA.
We note that classical stability characterization based on the
response of scalar test equations is not a suitable approach to
this aim, as it omits the differential and algebraic equations of
the examined system. In this regard, a technique to study PSA
by taking into account the system’s equations is proposed in
[17]. Therein, the effect of PSA is seen as that of an one-
step delay introduced to all algebraic variables that appear
in the system’s differential equations. The main limitation
of the technique in [17] is that it neglects the effect of the
integration method applied, which in turn prevents a precise
estimation of the available margin until numerical instability.
Finally, a matrix-based framework to study TDS factoring in
the effect of both system dynamics and integration method
was recently introduced by the first author of this paper
in [18], [19] without, however, studying the PSA. In fact,
the numerical methods and accuracy refinement techniques
commonly employed in the implementation of PSA can not
be studied by means of the derivations in these works.

B. Contributions

Given the limitations of existing techniques identified in
the previous section, this paper proposes a novel, matrix
pencil-based approach to study in a unified way the numerical
stability and accuracy of PSA employed for the solution of the
DAEs that describe the evolution of power system dynamics.

By employing the family of schemes most commonly used
in practical implementations of PSA, i.e. PC methods, the
paper quantifies the deformation introduced to the computed
system dynamics, first, due to the application of the integration
method per se and, second, due to the mismatch between state
and algebraic variables caused by the so called interfacing
problem. This information can be then used to find the
numerical stability margin as well as to estimate useful upper
time step bounds that achieve prescribed simulation accuracy
criteria. For Heun’s Method (HM), the matrix pencils that need
to be studied to this aim are fully derived, both for sparse
and dense matrix calculations. Finally, the paper provides a
comparison of the proposed technique with the one-step delay
method described in [17].

C. Organization

The remainder of the paper is organized as follows. Sec-
tion II provides preliminaries on TDS of power systems
through implicit and explicit integration methods. The PSA
and its implementation using PC methods are described in
Section III. Section IV provides the formulation of the pro-
posed matrix pencil-based technique to assess the numerical

stability and accuracy of PSA. The case studies are discussed
in Section V based on the IEEE 39-bus system, as well as on a
realistic 1479-bus model of the All-Island Irish Transmission
System (AIITS). Finally, conclusions are drawn and future
work directions are outlined in Section VI.

II. PRELIMINARIES

A. Notation

The notation adopted throughout the paper is as follows:
a, a, A, denote, respectively, scalar, vector, and matrix, and
A⊺ denotes the matrix transpose; N, R, C are the sets of
natural, real, and complex numbers, respectively, and ȷ is the
unit imaginary number; a(i) denotes the i-th iteration; a(t)
denotes a continuous-time quantity and a′(t) its first-order
derivative; L{·} is the Laplace transform, s is the complex
frequency in S-domain, and a(s) is a S-domain quantity; an+1

denotes a discrete-time quantity; z is the complex frequency in
Z-domain; ∆ and ∇ are the forward and backward difference
operators.

B. Numerical Integration Methods

A numerical integration method applied to a DAE power
system model can be formulated as a set of non-linear differ-
ence equations, the solution of which is an approximation of
the time-domain response of (1).

1) Implicit Methods: Let’s define:

xn+1−ℓ = x(t+ (1− ℓ)h) ,

yn+1−ℓ = y(t+ (1− ℓ)h) ,
(2)

where xn+1−ℓ : N → Rν and yn+1−ℓ : N → Rµ denote the
discretized state and algebraic variables, respectively, at time
t+(1− ℓ)h, with l ∈ N. Then, an implicit integration method
for the solution of (1) can be described as follows:

0 = ϕ(xn+1,yn+1,xn,yn, . . . ,xn−a,yn−a, h) ,

0 = ρ(xn+1,yn+1,xn,yn, . . . ,xn−a,yn−a, h) ,
(3)

where h is the simulation time step size; xn−a,yn−a, with
a ∈ N∗, are included so that (3) covers both Runge-Kutta
and multistep methods. Moreover, ϕ, ρ are column vectors
of functions that depend on the differential and algebraic
equations, respectively, as well as on the specific numerical
method applied. For example, for the TM we have:

0 = xn+1 − xn − 0.5h[f(xn,yn) + f(xn+1,yn+1)] ,

0 = hg(xn+1,yn+1) .
(4)

Solving (3) at every time step consists in calculating the
solution (xn+1,yn+1) := [x⊺

n+1,y
⊺
n+1]

⊺ (where ⊺ indicates
the transpose), which in this case is typically obtained through
the simultaneous-solution approach, i.e. by updating together
the state and algebraic variables of the system. This is done
through Newton iterations, i.e. by solving the problem:

J

[
∆x

(i)
n+1

∆y
(i)
n+1

]
= −

[
ϕ(i)

ρ(i)

]
, where J =

[
ϕ(i)
x ϕ(i)

y

ρ
(i)
x ρ

(i)
y

]
, (5)
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with ϕ(i)
x = ∂ϕ(i)/∂x

(i)
n+1 (similarly for the rest); and then

determining the new values as:

x
(i+1)
n+1 = x

(i)
n+1 +∆x

(i)
n+1 ,

y
(i+1)
n+1 = y

(i)
n+1 +∆y

(i)
n+1 .

(6)

The procedure above is repeated until convergence, i.e. until
||x(i+1)

n+1 −x(i)
n+1|| < ϵ and ||y(i+1)

n+1 −y(i)
n+1|| < ϵ, where ϵ > 0

is a given tolerance. The most costly step in this process is the
factorization of the Jacobian matrix J, which is required for
the solution of (5). Since J is a general, non-symmetric, sparse
matrix, its factorization is most commonly achieved through
symbolic and numeric LU decomposition [20]. Moreover, to
speed up the solution, a (very) dishonest Newton method is
often used, where J is factorized only once per (multiple)
time step(s). We note that a dishonest scheme is, ultimately, a
compromise, as it can speed up calculations but also sacrifices
convergence and may lead to numerical issues, such as infinite-
cycling.

2) Explicit Methods: In contrast to implicit integration
methods, explicit methods calculate the new state vector xn+1

at each step without the need to factorize J. In general,
an explicit numerical method for the solution of (1) can be
described as follows:

xn+1 = ψ(xn,yn, . . . ,xn−a,yn−a, h) ,

0 = hg(xn+1,yn+1) .
(7)

For example, if FEM is employed, we have:

xn+1 = xn + hf(xn,yn) , (8)
0 = hg(xn+1,yn+1) . (9)

Solution of (7) is usually obtained through PSA. Since PSA
is the main focus of this paper, we discuss it in detail in
Section III.

C. Classical Stability Characterization

In this section, we briefly recall the classical approach to
study the stability of a numerical integration method. The
stability region of a given numerical integration method is
conventionally characterized by evaluating its response when
applied to a scalar, linear test differential equation:

x′(t) = λx(t) , λ ∈ C . (10)

Let’s apply an integration method to (10) so that:

xn+1 = R(λh)xn . (11)

Then, R(λh) is called the method’s growth function and the
stability region of the method is defined by the set:

{λ ∈ C : |R(λh)| < 1} . (12)

Considering, for example, the TM, we have:

xn+1 = xn + 0.5hλxn + 0.5hλxn , (13)

which can be equivalently written in the form of (11), where:

R(λh) = (1 + 0.5λh)/(1− 0.5λh) . (14)

From (12), (14), we deduce that the region of stability of the
TM is the left half of the S-plane.

The main limitation of the above approach is that it neglects
the equations of the examined model. Hence, it can be only
used for certain methods and only qualitatively, and thus it is
inherently unsuitable for accuracy analysis.

III. THE PARTITIONED-SOLUTION APPROACH

In this section, we provide a description of PSA utilized for
the numerical integration of a DAE power system model in
the form of (1).

A. Forward Euler Method

Let us initially consider for the sake of illustration that FEM
is employed for the solution of (1), and that (xn,yn) is known
for some n. Then, the idea of PSA is to obtain the solution
(xn+1,yn+1) in an alternating fashion. That is, first, (xn,yn)
is used in (8) to evaluate f and then calculate xn+1. Second,
using the calculated xn+1, (9) is solved for yn+1, e.g. through
Newton iterations, which in this case read as follows:

g(i)y ∆y
(i)
n+1 = −hg(i) ,

y
(i+1)
n+1 = y

(i)
n+1 +∆y

(i)
n+1 .

FEM is the simplest and most intuitive among all integration
methods. However, it also shows a poor performance and
hence, TDS routines of software tools that adopt PSA prefer
to rely on more robust and complex schemes. With no loss of
generality, in the following we further discuss PSA by con-
sidering Predictor-Correctors (PCs) schemes, i.e. the family of
methods most commonly used in practical implementations of
PSA [7], [17].

B. Predictor-Corrector (PC) Iterations

PC schemes combine the application of explicit and im-
plicit numerical methods. The steps of a generic PC scheme
employed for the solution of (1) can be described as follows:

Predictor: The predictor implements an explicit method that
provides an initial estimation (ξ(0)n+1) of xn+1, as follows:

ξ
(0)
n+1 = ψ(xn,yn, . . . ,xn−a,yn−a, h) . (15)

Corrector: The corrector employs an implicit method to
refine the accuracy of the estimation of xn+1. The i-th
corrector step has the form:

0 = ϕ(ξ
(i)
n+1, ξ

(i−1)
n+1 ,yn+1,xn,yn, . . . ,xn−a,yn−a, h) , (16)

where i ∈ N∗ : i ≤ r, which means that the accuracy is
improved by iteration (typical values are r = 1 or r = 2).

Then, xn+1 is obtained simply as:

xn+1 = ξ
(r)
n+1 . (17)

The scheme is completed considering the algebraic equations:

0 = hg(xn+1,yn+1) . (18)
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To solve for (xn+1,yn+1) for a generic scheme in the form of
(15)-(18),1 the basic procedure of PSA is in analogy to the one
discussed in the beginning of Section III-A for FEM. That is,
xn+1 is first calculated from (15)-(17). Then, yn+1 is obtained
from (18). Nevertheless, notice that, in contrast to FEM, using
(15)-(17) to calculate xn+1 requires knowing yn+1 (see (16)),
which is though not available yet. The problem of handling
the unknown yn+1 in (16) is an important problem of PSA,
commonly referred to as the interfacing problem.

C. Interface Errors

The interfacing problem is a consequence of the inherent
coupling of the DAEs used to describe the dynamic behavior
of power systems. In general, the way that software tools deal
with this problem is by adopting an approximation, where
yn+1 is substituted by a known value, say yint. For PC
schemes, this leads to a change of (16) into:

0 = ϕ(ξ
(i)
n+1, ξ

(i−1)
n+1 ,yint,xn,yn, . . . ,xn−a,yn−a, h) . (19)

Equation (19) describes the corrector in a general way with-
out imposing a specific strategy to deal with the interfacing
problem. Apparently, once the interfacing strategy is fixed,
yint is fully defined. In this regard, the simplest and compu-
tationally most efficient interfacing strategy is extrapolation,
i.e. the value at the previous step (yn) is used instead of yn+1.
However, using yint = yn in (19) introduces a mismatch
between state and algebraic variables and thus an error to the
numerical solution of the system, known as the interface error.
One approach to reduce the interface error is comparing yint

with yn+1 once the latter has been computed. If the difference
is higher than a given threshold, then the integration of the
step is repeated until an acceptable tolerance is achieved, or
equivalently, until yint ≈ yn+1.

IV. PENCIL-BASED STABILITY ANALYSIS

In this section, we first define the stiffness and Small-Signal
Stability Analysis (SSSA) of (1), and then proceed to describe
the proposed SSSA-based technique to study PSA.

A. Model Stiffness and SSSA

Power system models are known to be stiff, i.e. the time
constants that define the differential equations of the model
span multiple time scales. The stiffness of the DAE system
(1) is typically measured by the ratio between the largest and
smallest eigenvalues of the corresponding small-signal model.
Assume that an equilibrium (xo,yo) of (1) is known. At the
equilibrium, we have 0 = f(xo,yo), 0 = g(xo,yo). For
sufficient small disturbances and for the purpose of applying

1Note that there exist multiple ways in which the solution of state/algebraic
variables can be updated and thus formulation (15)-(18) is not unique. E.g., an
alternative is to solve algebraic variables after each corrector step (instead of
only in the end). Comparing all possible formulations is not in the scope
of this paper, yet, solving more often for algebraic variables is expected to
improve accuracy but also increase the computational cost.

well-known results from linear stability theory, (1) can be
linearized in a neighborhood of (xo,yo) as follows:

x̃′(t) = fxx̃(t) + fyỹ(t) ,

0 = gxx̃(t) + gyỹ(t) ,
(20)

where x̃(t) = x(t) − xo, ỹ(t) = y(t) − yo; and fx, fy ,
gx, gy are Jacobian matrices evaluated at (xo,yo). Applying
the Laplace transform to (20) and omitting for simplicity the
time-dependency in the notation, we have:[

sL{x̃} − x̃(0)
0

]
=

[
fx fy
gx gy

] [
L{x̃}
L{ỹ}

]
, (21)

where s is a complex frequency in the S-plane. Equivalently:

(sE−A)L
{[
x̃
ỹ

]}
= E

[
x̃(0)
0

]
, (22)

with
E =

[
I 0
0 0

]
, A =

[
fx fy
gx gy

]
, (23)

where I denotes the identity matrix of proper dimensions.
Then, the polynomial matrix

P(s) = sE−A , (24)

is called the matrix pencil of (20) and plays an important role
in the study of the system. The eigenvalues of this pencil can
be obtained from the solution of the algebraic problem [21]:

P(s)v = 0 , (25)

with v ∈ C(ν+µ)×1. Then, system (20) is stable if for every
eigenvalue si of P(s), ℜ(si) < 0. Let the system be stable
and smax, smin be the eigenvalues of (24) with the largest and
smallest magnitudes, i.e. smax = max |si|, smin = min |si|,
∀si, then the stiffness ratio of (1) can be defined as follows:

S = |smax|/|smin| . (26)

Alternatively to (24), algebraic variables can be eliminated
from (20) provided that gy is non-singular, in which case the
following pencil can be equivalently used in (25):

P(s) = sI−As , (27)

where As = fx − fyg−1
y gx; and v ∈ Cν×1.

We have two notes on (24), (27).
First, the two pencils have the same finite eigenvalues,

yet (24) has also the infinite eigenvalue with multiplicity µ.
Recall that finite eigenvalues are the zeros of the polynomial
det(sE − A) = p(s), which is of order ν. On the other
hand, the existence of the infinite eigenvalue is seen by means
of the problem (sE − A)v = 0 rewritten in the reciprocal
form (E − s−1A)u = 0, where u ∈ Cν×1. Since E is
singular, there exists a null vector u such that Eu = 0,
and thus s−1Au = 0, so that u is an eigenvector of the
reciprocal problem corresponding to the eigenvalue s−1 = 0,
or s → ∞ [22].

Second, E and A are sparse matrices, whereas As is
dense. This makes a difference in the numerical calculations.
For small/medium size systems, (27) is preferred and the
solution is obtained with the QR algorithm [23], [24]. On
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the other hand, (24) is preferred for large-scale systems and
when it suffices to find only a subset of the spectrum. The
solution in this case is found with a sparse algorithm that can
handle asymmetric matrices, such as Krylov-Schur or contour
integral-based methods [24]–[26].

B. Proposed Numerical Stability and Accuracy Assessment

In this section, we describe the proposed approach. To
this aim, we consider a common PC method, namely Heun’s
method (or modified Euler method), variants of which are
used in commercial tools, including [27], [28]. Heun’s Method
(HM) is a combination of FEM and TM. When applied to (1),
the method reads as follows:

ξ
(0)
n+1 = xn + hf(xn,yn) ,

ξ
(i)
n+1 = xn + 0.5hf(xn,yn) + 0.5hf(ξ

(i−1)
n+1 ,yint) ,

xn+1 = ξ
(r)
n+1 ,

0 = hg(xn+1,yn+1) .

(28)

Notice that, due to ξ(i−1)
n+1 being always available, the corrector

can be expressed in an explicit form, without the need to resort
to further calculations.

Let (xo,yo) be an equilibrium of (1). Then, (xo,yo) is also
a fixed point of (28). Linearizing (28) at this point gives:

ξ̃
(0)

n+1 = x̃n + h(fxx̃n + fyỹn) , (29)

ξ̃
(i)

n+1 = x̃n +
h

2
[fxx̃n + fxξ̃

(i−1)

n+1 + fy(ỹn + ỹint)] , (30)

x̃n+1 = ξ̃
(r)

n+1 , (31)
0 = gxx̃n+1 + gyỹn+1 . (32)

Equivalently, (29)-(32) can be rewritten as:[
I 0
gx gy

][
x̃n+1

ỹn+1

]
=

[
I+ hCrfx (hCr − h

2Cr−1)fy
0 0

] [
x̃n

ỹn

]
+

[
h
2Cr−1fyỹint

0

]
, (33)

where Cr =

r∑
j=0

(
h

2
fx

)j

, r ∈ N∗ . (34)

The proof of (33) is provided in Section A of the Appendix.
Expression (33) can be further simplified once a specific

interfacing strategy is adopted. As discussed in Section III-C,
the most common interfacing strategy is extrapolation. In this
case, yint = yn and (33) corresponds to a linear system of
difference equations with matrix pencil:

PPC(z) = z

[
I 0
gx gy

]
−
[
I+ hCrfx hCrfy

0 0

]
, (35)

where z is a complex frequency in the Z-plane.
The eigenvalues of the pencil PPC(z) provide insights into

the small-signal dynamics of the DAE system (1) approxi-
mated by HM when interfacing is achieved by extrapolation.
Recall from Section IV-A that the actual small-signal dynamics
of (1) are represented by the eigenvalues of P(s). Thus, by
comparing the eigenvalues of the two pencils we can determine
how much the HM numerically deforms the dynamic modes

of the power system model. Moreover, by increasing the time
step we can determine the corresponding numerical stability
margin. In particular, provided that the small-signal power
system model is stable, numerical stability is maintained for
all time step sizes which lead to all eigenvalues of PPC(z)
having magnitudes smaller than 1. Note that in order for the
dynamics of P(s) and PPC(z) to be comparable, they need to
be referred to the same domain. In this paper, eigenvalues are
always referred to the S-plane. With this regard, recall that a
complex frequency z in the Z-plane is mapped to the S-plane
through the relationship:

ŝ = log(z)/h . (36)

Let us now assume that the interface error in some manner
is eliminated or is negligible. In this case, ỹint = yn+1 and
(33) corresponds to a linear system of difference equations
with matrix pencil:

P̄PC(z) = z

[
I −Bfy
gx gy

]
−
[
I+hCrfx (hCr−B)fy

0 0

]
, (37)

where B = h
2Cr−1. Then, the eigenvalues of the pencil

P̄PC(z) represent the small-signal dynamics of (1) approxi-
mated by HM and when perfect interfacing is assumed. As a
result, by comparing the dynamics of the PPC(z) with those of
P̄PC(z), we can quantify the amount of deformation of system
dynamics that is explicitly due to the interface error. This is
further discussed in the case study presented in Section V.

The following remarks are relevant:
• The proposed approach can be used to estimate the

time step size that allows achieving prescribed simulation
accuracy criteria, taking into account the deformation of
the system’s dynamics. This is in contrast to current
practice of PSA-based commercial software packages,
which rely on purely empirical rules to estimate the
maximum admissible time step, based on long experi-
ence with the simulation of conventional, synchronous
machine-based power systems, see [27]. For example, it
is common to fix the time step to 1 order of magnitude
lower than the smallest time constant in the process
being simulated, e.g. see [27]. Yet, the efficacy of such
heuristics is currently challenged by the gradual shift
to converter-based power systems. In particular, it has
been seen that state-of-art converter models often lead to
numerical instability when connected to a power network
with low short circuit strength [15], [16]. On the contrary,
the proposed technique can be applied to every system
and is thus device-independent, and this will be also true
for future power system technologies.

• Different PSA-based methods approximate the solution
of the DAEs with different accuracies when applied
under the same time step. Thus, a fair computational
comparison of various methods requires the dual setup,
where a different time step size is used for each of them,
so that all yield the same level of numerical error. The
time step that needs to be used for each method can be
estimated by means of the proposed tool.

• Implementation of the proposed tool requires only the as-
sociated matrix pencils and thus, it allows quickly testing
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– potentially new – numerical schemes and interfacing
strategies whose full implementation in the time-domain
routine may be an involved procedure. Schemes that do
not fulfill the user’s numerical deformation requirements
can be discarded without further considerations.

• The proposed technique is based on SSSA and thus, being
strict, its results are valid around steady-state solutions
(xo,yo) of the system. Around (xo,yo), comparison of
P(s), PPC(z) and P̄PC(z) allows determining precisely
the numerical deformation introduced by an integration
method given the time step. That said, the structure
of the dynamic modes and stiffness of power system
models, as well as the properties of integration methods,
tend to be “robust” and therefore, our results provide a
rough yet accurate quantification of the system’s dynam-
ics numerical deformation, also for changing operating
conditions. Similar considerations can be found in the
existing literature, e.g., in [18], [19], [29], [30].

C. Dense Matrix Formulation

The matrix pencils PPC(z) and P̄PC(z) were derived above
using a sparse matrix formulation. As discussed in Section IV-
A, this is the preferred option if a large-scale system is to be
analyzed. On the other hand, in Section IV-A we also discussed
that, for small/medium size systems, it is more efficient to
work with dense matrices. Thus, for the sake of completeness,
we also provide an alternative way to compute the finite
eigenvalues of the two pencils, based on dense matrices.

From (32), ỹn+1 = −g−1
y gxx̃n+1 and ỹn = −g−1

y gxx̃n,
under the assumption that gy is non-singular. Using these
expressions, as well as (31), in (49) (see Appendix), we find:

PPC(z) = zI− (I+ hCrAs) , (38)
P̄PC(z) = z(I+M)− (I+ hCrAs +M) , (39)

where M = h
2Cr−1fyg

−1
y gx and Cr is given by (34).

D. Generic Adams-Bashforth PC Methods

The proposed technique was described above for HM but, in
principle, is applicable to any PSA-based integration scheme.
Since our focus is on PC methods, we discuss here the
application to a generic Adams-Bashforth PC method. An
Adams-Bashforth method applied to (1) reads as:

ξ
(0)
n+1 = xn+ h

k−1∑
j=0

γj∇jf(xn,yn) ,

ξ
(i)
n+1 = xn+ hbkf(ξ

(i−1)
n+1 ,yint)+ h

k−1∑
j=0

bjFn−k+j+1 ,

xn+1 = ξ
(r)
n+1 ,

0 = hg(xn+1,yn+1) .

(40)

where ∇j denotes the j-th order backward difference operator;
Fn−k+j+1 = f(xn−k+j+1,yn−k+j+1); and k ∈ N∗. Notice
that HM is a special case of the Adams-Bashforth method
obtained from (40) for k = 1, γ0 = 1, and b0 = b1 = 0.5.
Considering either perfect interfacing or extrapolation, the

properties of (40) can be seen through a linear system of
difference equations in the form:

Eyn+1 = Ayn , (41)

and thus, similarly to previous sections, by studying a matrix
pencil in the form zE −A. The proof of (41) is provided in
Section B of the Appendix.

E. Delay-Based Numerical Stability Analysis in [17]

To the best of our knowledge, the only attempt to study the
numerical deformation caused by PSA to the dynamic modes
of power systems is the technique described in [17]. The main
idea in [17] is that the numerical effect of interfacing by ex-
trapolation can be seen by studying the system that arises if all
the algebraic variables that appear in the differential equations
of (1) are taken from the previous time step. Applying this
approach changes (1) to the following time-delay system:

x′(t) = f(x(t),y(t− h)) ,

0 = g(x(t),y(t)) .
(42)

Then, linearization of (42) gives:

x̃′(t) = fxx̃(t) + fyỹ(t− h) ,

0 = gxx̃(t) + gyỹ(t) ,
(43)

and the matrix pencil of (43) is:

Pd(s) = sE−
[
fx 0
gx gy

]
−
[
0 fy
0 0

]
e−sh , (44)

or, alternatively, using a dense matrix formulation,

Pd(s) = sI− fx + fyg
−1
y gxe

−sh . (45)

Map to S-domainMap to S-domain

Difference equationsDifference equations

(28) with yint = yn
(28) with yint = yn+1

extrap.

yes

no

ideal

Pencil P(s) Pencil Pd(s)Pencil P̄PC(z) Pencil PPC(z)

SSSA

Power system model:

x′(t) = f (x(t),y(t))

0 = g(x(t),y(t))

x′(t) = f(x(t),y(t− h))

0 = g(x(t),y(t))

Neglect TDI
method?

Interfacing
strategy

Technique in [17]:

HM with r

corr. steps

Fig. 1: Procedure to obtain the matrix pencils considered.

Therefore, in terms of matrix pencils, the idea in [17] is
that the numerical effect of PSA (in particular the interface
error) can be seen by comparing the eigenvalues of Pd(s)
and P(s). A limitation of this approach is that it does not take
into account the integration scheme applied, or, equivalently,
it assumes that its effect can be neglected. For example, using
HM with r = 1 or 2 would make no difference on the
interface error in view of Pd(s). On the contrary, the matrix
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TABLE I: Summary of matrix pencils considered. For each pencil, both the dense and sparse matrix form is given. Numerical
deformation can be determined by comparing the eigenvalues of PPC(z), P̄PC(z), Pd(s), with those of P (s). To facilitate
comparison, eigenvalues of Z-domain pencils are mapped to the S-domain.

Approximation by Symbol Sparse Matrix Form Dense Matrix Form Domain (Map to S)

N/A (DAE system) P (s) sE−A sI−As S (Not needed)

HM, yint = yn PPC(z) z

 I 0

gx gy

−

I+ hCrfx hCrfy

0 0

 zI− (I+ hCrAs) Z (s =
log(z)

h
)

HM, yint = yn+1 P̄PC(z) z

 I −Bfy

gx gy

−

I+ hCrfx (hCr−B)fy

0 0

 z(I+M)− (I+ hCrAs +M) Z (s =
log(z)

h
)

PSA analysis in [17] Pd(s) sE−

fx 0

gx gy

−

0 fy

0 0

 e−sh sI− fx + fyg
−1
y gxe

−sh S (Not needed)

pencils proposed in this paper to quantify the interface error,
i.e. P̄PC(z) and PPC(z), take into account both the numerical
method applied and the adopted interfacing strategy, and, from
this viewpoint, they are exact.

Finally, a summary of the pencils P(s), PPC(z), P̄PC(z),
and Pd(s), is given in Table I. Moreover, a flow chart that
outlines the process to derive these pencils is presented in
Fig. 1. A comparison of the information given by these pencils
is provided in the case study presented in Section V.

V. CASE STUDIES

In this section, we illustrate the proposed technique to study
the numerical stability and accuracy of PSA. The results in
Section V-A are based on the IEEE 39-bus benchmark system,
whereas Section V-B is based on a 1479-bus model of the
All-Island Irish Transmission System (AIITS). Simulations are
carried out using the power system analysis software tool
Dome [31]. The examined systems permit efficient calculation
of their whole spectra, and thus, throughout this section,
eigenvalues are computed with LAPACK [32], using dense
matrix forms (see Table I).

A. IEEE 39-bus system
This section considers the IEEE 39-bus system, the static

and dynamic data of which are detailed in [33]. The 39-
bus system comprises 10 synchronous machines represented
by fourth order, two-axis models, 34 transmission lines, 12
transformers, and 19 loads. Each machine is equipped with
an Automatic Voltage Regulator (AVR), a Turbine Governor
(TG), and a Power System Stabilizer (PSS). The DAE model
has in total 129 states and 262 algebraic variables. An equilib-
rium of the DAEs is obtained from the solution of the power
flow problem and the initialization of dynamic components.
Then, the small-signal dynamics of the system are determined
by computing the eigenvalues of the matrix pencil P(s) (see
Section IV-A). In particular, eigenvalue analysis of P(s) shows
that the test system is stable around the examined equilibrium.
The system’s fastest and slowest dynamics are represented,
respectively, by the eigenvalues −106.01 and −0.02, which
gives from (26) a stiffness ratio of 5.3 · 103.

1) Interfacing by Extrapolation: In the following, we con-
sider that PSA is employed for the numerical integration
of the system. In particular, we consider that the system is
numerically solved using HM, and that interfacing is handled
through extrapolation of the known values of the algebraic
variables, i.e. yint = yn, as described in Section III. To
quantify the deformation caused to the dynamic modes of
the system due to the application of the PSA-HM numerical
scheme, we calculate the pencil PPC(z) given by (38) and
compute its eigenvalues, which we then map from the Z-
domain to the S-domain according to (36). Figure 2 shows the
numerical deformation introduced to the rightmost eigenvalues
of the system for different time step sizes and for different
number of corrector steps. For the sake of comparison, the
case where no corrector step is applied is also provided in
each plot. Note that in this case the integration scheme reduces
to FEM, see (28). Results suggest that if a small time step
is employed, then a single corrector step (r = 1) suffices
to refine accuracy, see Fig. 2a, where h = 0.001 s. For
h = 0.01 s, one corrector step is not adequate to achieve
precise representation of the system’s response, while using
r = 2 slightly improves the accuracy for most modes, yet
leaving a non-negligible error. Moreover, higher values of r
increase the computational burden of the numerical method,
without however providing a proportionate improvement in
precision. This is to be expected for large-enough time steps,
where the effect of the extrapolation of algebraic variables
becomes significant. Finally, for h = 0.04 s, the solution is
guaranteed to diverge if no corrector step is applied, since
this case shows distorted eigenvalues in the right half of
the S-plane, indicating numerical instability. In particular, the
numerical stability margin of the system when no corrector
is applied is found to be h = 0.035 s. Including corrector
steps, although it prevents numerical instability, does not
yield a precise approximation of the system’s dynamic modes.
Furthermore, interestingly, there also exist modes for which
the accuracy deteriorates with higher values of r.

2) Comparison with Perfect Interfacing: In this section,
we assume that the employed PSA-HM scheme achieves
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Fig. 2: 39-bus system: Eigenvalue analysis of HM, interfacing by extrapolation.
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Fig. 3: 39-bus system: Eigenvalue analysis of HM, perfect interfacing.
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Fig. 4: 9-bus system: Numerical deformation of least damped
modes by HM.

elimination of the interface error or, equivalently, that yint =
yn+1. The numerical deformation of the dynamic modes in
this scenario can be quantified through the eigenvalues of the
pencil P̄PC(z). The results for different time steps and number
of corrector steps are presented in Fig. 3. These results indicate
that, for time steps in the range 0.001-0.01 s, using 1 to 2
corrector steps is adequate to achieve a precise approximation

of the examined system’s dynamics (Figs. 3a, 3b). For larger
step sizes (see Fig. 3c), corrector steps allow only partial
accuracy refinement.

In the following, we provide a further comparison of the
results obtained with yint = yn and yint = yn+1. With
this aim, we focus on the two most critical modes of the
system as defined by their damping ratios. The most lightly
damped mode (hereafter Mode 1) of the system is represented
by the complex pair −0.3212± ȷ4.0435, which has damping
ratio 7.92% and natural frequency 0.64 Hz. The second most
lightly damped mode (hereafter Mode 2) is represented by the
pair −1.4318±ȷ8.7610, which has damping ratio 16.13% and
natural frequency 1.41 Hz.

TABLE II: 39-bus system: Upper time step bounds that satisfy
a 0.1% relative error requirement for Modes 1 and 2.

r 1 1 2 2

yint yn yn+1 yn yn+1

max. time step [s] 0.0002 0.009 0.0002 0.015

We track the numerical deformation of Modes 1 and 2
as functions of the integration time step h. The results for
two different setups of the HM (r = 1 and 2) are summa-
rized in Fig. 4, where the relative error is defined as 100 ·
|ŝi − si|/|si|, with si being an eigenvalue of the system and ŝi
the corresponding numerically deformed eigenvalue. Figure 4a
shows that, although extrapolating algebraic variables from
the previous time step (yint = yn) introduces distortion, the
structure of the integration method plays the most important
role in the approximation of Mode 1. In particular, when
r = 1, the interface error causes a deformation that becomes
significant for large values of h. Yet, with two corrector steps
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(r = 2), the error is drastically reduced for all values of h
considered, with the relative deformation being below 1%,
regardless of the adopted interfacing strategy. On the other
hand, Fig. 4b indicates that the interfacing strategy plays
the most important role in the approximation of Mode 2.
Specifically, extrapolation of algebraic variables significantly
deforms Mode 2 both for small and larger time steps, with
additional corrector steps not being able to notably reduce
the error. Finally, assuming for the two modes a prescribed
relative error requirement smaller than 0.1%, the estimated
maximum admissible time step for the four different PSA
setups examined are extracted from Fig. 4 and summarized
in Table II. We note here that the above discussion is based
on two modes for the sake of illustration, but this is not a
limitation of the proposed analysis, which can be extended to
include more, or even all system modes.

3) Comparison with Method in [17]: We finally provide a
discussion on the accuracy of the delay-based analysis of the
PSA described in [17]. As mentioned in Section IV-E, [17]
focuses on the effect of extrapolating the algebraic variables
while, on the other hand, effectively neglecting the impact of
the specific integration method applied. To illustrate how this
technique compares to the approach described in this paper, we
calculate the matrix pencil Pd(s) and compute its eigenvalues
as the simulation time step h is varied. Figure 5 presents the
root loci obtained for the two least damped modes of the
system (Modes 1 and 2). From the figure, it is obvious that the
method in [17] is not able to capture modes whose deformation
is more due to the integration method applied and less due
to the extrapolation of algebraic variables, such as Mode 1
(see Fig. 5a). On the contrary, it can be accurate in tracking
the approximation of modes like Mode 2, the deformation of
which is mostly due to interfacing by extrapolation.
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Fig. 5: 39-bus system: HM (yint = yn) vs method in [17].

B. All-Island Irish Transmission System

This section is based on a 1479-bus model of the AIITS.
Topology and steady-state data have been provided by the
Irish transmission system operator, EirGrid Group, whereas
dynamic data have been determined based on our knowledge
about the current technology of generators and automatic con-
trollers. The system model consists of 796 lines, 1055 trans-
formers, 245 loads, 176 wind generators, and 22 Synchronous
Generators (SGs) equipped with AVRs and TGs. Moreover,
6 SGs are equipped with PSSs. In total, the system model
includes 1615 state and 7225 algebraic variables. Eigenvalue
analysis of the matrix pencil P(s) shows that the DAE
power system model is stable under small disturbances. The
fastest and slowest eigenvalues of the system are respectively,
−99900.01 and −0.0013. These yield a stiffness ratio of
7.6 ·107. Note that this is four orders of magnitude larger than
the stiffness of the 39-bus system considered in Section V-A.
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Fig. 6: AIITS: Deformation of least damped modes by
HM (yint = yn).

For the sake of illustration, we assume that HM with
interfacing by extrapolation of algebraic variables (yint = yn)
is employed for the solution of the AIITS. In this case, to
apply the proposed technique we compute the eigenvalues of
the associated pencil PPC(z) (see (38)). The full spectrum of
PPC(z) for a given time step is computed with LAPACK in
∼ 2.4 s.2 We track the deformation of the five least damped
dynamic modes of the system as the integration time step size
is varied and we present the results in Figs. 6.

The damping deformation shown in Fig. 6b is defined as fol-
lows. If si is an eigenvalue of the DAE system with damping

2All simulations are carried out with a 64-bit Linux operating system
running on a 8-core Intel i7 1.8 GHz, 8 GB laptop.
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ratio ζ, and ŝi is the corresponding deformed eigenvalue with
damping ratio ζ̂, then the damping deformation is calculated
as 100 · (ζ̂ − ζ). Results indicate that numerical errors tend
to increase with the time step, although they can also remain
constant or decrease for some modes and in certain regions,
e.g. see Modes 2 and 4 in Fig. 6 Furthermore, we note that
errors for some modes can be very large even for very small
time steps (an effect that was not observed on the IEEE 39-
bus system). For example, the relative error of Mode 4 for
h = 10−4 s is about 4%. This effect is caused by the one-step
mismatch between state and algebraic variables present when
interfacing by extrapolation. This effect is further illustrated
in Fig. 7.
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Fig. 7: AIITS: Eigenvalue tracking for Modes 1 and 4.

VI. CONCLUSION

This paper proposes a novel technique based on SSSA
to study the numerical stability and precision of the PSA
applied for the solution of DAE power system models. The
proposed technique takes into account the dynamics of the
model to be solved, the integration method applied, as well as
the adopted interfacing strategy, and allows estimating useful
time step bounds that achieve prescribed simulation accuracy
criteria. Formulation and simulation results are given for
the well-known HM, while the applicability of the proposed
approach to any method of the Adams-Bashforth family is duly
discussed. Comparison with existing literature is also provided.

We will dedicate future work to study the effect on the
proposed tool of automatic time step size and order control
techniques. Moreover, we will employ the proposed approach
to study the numerical robustness of state-of-art power con-
verter models solved with PSA, such as the ones in [15], [16].

APPENDIX

A. Proof of (33)

Let first rewrite (29) and (30) as follows:

ξ̃
(0)

n+1 = (I+ hfx)x̃n + hfyỹn , (46)

ξ̃
(i)

n+1 = (I+
h

2
fx)x̃n+

h

2
fxξ̃

(i−1)

n+1 +
h

2
fy(ỹn + ỹint) . (47)

For the 1-st corrector step, using (46) in (47) for i = 1 gives:

ξ̃
(1)

n+1 =(I+ hfx +
h2

2
f2
x)x̃n

+ (I+ hfx)
h

2
fyỹn +

h

2
fyỹint .

(48)

Similarly, for i = 2, using (48) in (47) gives:

ξ̃
(2)

n+1 =(I+ (I+
h

2
fx +

h2

4
f2
x)hfx)x̃n + (

1

2
I+

h

4
fx

+
h2

4
f2
x)hfyỹn + (

1

2
I+

h

4
fx)hfyỹint .

By induction, we get for the r-th corrector step:

ξ̃
(r)

n+1 = (I+ hCrfx)x̃n + (Cr − 0.5Cr−1)hfyỹn

+ 0.5hCr−1fyỹint ,
(49)

where Cr is given by (34), and Cr = I+0.5hCr−1fx. From
(31), (32), (49), we arrive at (33).

B. Proof of (41)

Let us first rewrite the predictor in the following form:

ξ
(0)
n+1 = xn + h

k−1∑
j=0

cjf(xn−k+j+1,yn−k+j+1) , (50)

where the coefficients cj can be obtained by using backward
difference properties, i.e.:

∇j+1f(xn,yn) = ∇jf(xn,yn)−∇jf(xn−1,yn−1) ,

∇0f(xn,yn) = f(xn,yn) .

Additionally, the equilibrium point (xo,yo) is also a fixed
point of the numerical method, under the assumption that
the system has been in steady-state for a time equal to kh.
Linearizing (40) around this point, we have for the predictor:

ξ̃
(0)

n+1 = x̃n + h

k−1∑
j=0

cj(fxx̃n−k+j+1 + fyỹn−k+j+1) , (51)

and for the i-th corrector step:

ξ̃
(i)

n+1 = x̃n + h

k−1∑
j=0

bj(fxx̃n−k+j+1 + fyỹn−k+j+1)

+ hbk(fxξ̃
(i−1)

n+1 + fyỹint) . (52)

We proceed as follows: For i = 1, substitution of (51) in
(52) allows eliminating ξ̃

(0)

n+1 and obtain ξ̃
(1)

n+1. Subsequently,

ξ̃
(1)

n+1 is substituted in (52), and so on ∀i < r, until we obtain

ξ̃
(r)

n+1. Taking into account (31), we obtain the following form:

x̃n+1 = R1x̃n +Q1ỹn +R2x̃n−1 +Q2ỹn−1

+ . . .+Rkx̃n−k+1 +Qkỹn−k+1 ,
(53)

where Rj , Qj are proper coefficient matrices. Considering
(32) and using the notation xn = (x̃n, ỹn), (53), (32) give:

Kxn+1 = H1xn +H2xn−1 + . . .+Hkxn−k+1 , (54)

where K =

[
I 0
gx gy

]
, Hj =

[
Rj Qj

0 0

]
, j ≥ 1 .

Then, by setting y
[0]
n+1 = xn+1, y[1]

n+1 = xn, . . . , y[k−1]
n+1 =

xn−k+2, and y
[0]
n = xn = y

[1]
n+1, y

[1]
n = xn−1 = y

[2]
n+1,

y
[k−1]
n = xn−k+1. Then, (54) can be equivalently written as:

Hky
[k−1]
n = Ky

[0]
n+1−H1y

[1]
n+1−H2y

[2]
n+1−. . .−Hk−1y

[k−1]
n+1 .
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Collecting the relationships above in a matrix form, we arrive
at (41), with yn = (y

[0]
n ,y

[1]
n , . . . ,y

[k−1]
n ), and:

E =

[
0 I
K −H

]
, A =

[
I 0
0 Hk

]
, H = [H1 H2 . . . Hk−1] .
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