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ABSTRACT This paper proposes a general framework to interpret the concept of Instantaneous Frequency
(IF) in three-phase systems. The paper first recalls the conventional frequency-domain analysis based on
the Fourier transform as well as the definition of IF which is based on the concept of analytic signals. The
link between analytic signals and Clarke transform of three-phase voltages of an ac power system is also
shown. Then the well-known five paradoxes of the IF are stated. In the second part of the paper, an approach
based on a geometric interpretation of the frequency is proposed. This approach serves to revisit the five
IF paradoxes and explain them through a common framework. The case study illustrates the features of the
proposed framework based on a variety of examples and on a detailed model of the IEEE 39-bus system.

INDEX TERMS Analytic signal (AS), Clarke transform (CT), differential geometry, Fourier transform (FT),
harmonic analysis (HA), Hilbert transform (HT), instantaneous frequency (IF), phase-locked loop (PLL),
symmetrical components.

I. INTRODUCTION
A. MOTIVATION

THE recent move toward non-synchronous and dis-
tributed generation has led the power system commu-

nity to rediscuss not only the operation and the economic
aspects of the electric grid but also its very basicmathematical
foundation [1]–[3]. This paper focuses on a fundamental
quantity of ac grids, namely the frequency, its meaning and
its many definitions, as well as the paradoxes that these
definitions appear to generate. In this context, the paper aims
at proposing a common framework, based on the concept of
invariant provided by differential geometry, that can explain
these paradoxes.

B. LITERATURE REVIEW
The Instantaneous Frequency (IF) of an ac signal is defined
as the time derivative of the signal’s phase angle [4]. This
definition assumes that the signal is described by a single

sinusoid. If the representation of the signal is a different
function, for example the sum of two sinusoids, then the
definition of its frequency is less straightforward. As a matter
of fact, the literature on this topic is vast, as much as the
different signal representations that have been considered [5].

Another issue that has been widely discussed in the lit-
erature is that the value of frequency seems to depend on
the transformation utilized to represent the signal itself. This
is an apparent inconsistency since, intuitively, the estimated
frequency should be the same independently of the transfor-
mation. This issue is clearly relevant in engineering appli-
cations, for example in the design of control systems that
regulate the frequency in a power system. If the estimation of
the controlled signal is not correct or accurate enough, then
it also becomes hard to ensure a reliable and robust control
design [6]–[10].

Yet another issue with the common definition of fre-
quency and a large number of existing frequency estima-
tion techniques is that they do not account for variations
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of the magnitude of the signal. However, the magnitude of
measured signals, e.g., the voltage at a network bus, is not
constant during electromechanical transients, which is when
it is of upmost importance to be able to accurately estimate
frequency variations [11], [12]. Thus, only techniques that
are able to measure the phase angle independently of the
magnitude of themeasured signals are useful in power system
applications.

A last issue is that the estimation of the IF should be
available as soon as possible. This requirement conflicts with
the need of certain transform-based techniques, such as the
Fourier Transform (FT) and the Hilbert Transform (HT),
for several samples – in principle, infinitely many – of the
signal [13], [14]. Also in this case, several techniques that
involve, e.g., mobile windows, anti-aliasing, etc., have been
proposed [15]–[17], although the need for a minimum set of
measurements poses intrinsic and probably unsolvable limits
to this kind of approaches [18]. The inability of the FT to
track the IF is what has led, ultimately, to the well-known
paradoxes that are discussed in this work.

An option to overcome the limitations of the FT is to use
functions other than sine and cosine waves to decompose the
signal. This has been done for example with wavelets, which
include both a frequency and a damping, and thus appear
more adequate to represent the profile of electromechanical
oscillations observed in power systems [19]–[21]. The ulti-
mate resource is to use heuristic custom functions to decom-
pose the signal, which is, in turn, the solution provided by
the Hilbert-Huang Transform (HHT) [22]. For its flexibility,
the HHT has found applications also in the analysis of power
system transients [23]–[25]. However, this kind of adaptive
transforms do not solve the problem of the estimation of the
IF [26].

Another family of techniques, which are based on Phase-
Locked Loops (PLLs), attempt to track the signal while it is
evolving in time [27], [28]. The estimation of the frequency
based on PLLs is conceptually closer to the definition of IF
given in [4]. However, PLLs rely on a control loop, which
can be also quite sophisticated, but ultimately suffers from
another intrinsic dilemma: the faster is the tracking the more
sensitive to noise is the estimation.

A recent interpretation of electric quantities as ‘‘curves’’
suggests that the frequency corresponds to the curvature of a
trajectory [29]. This interpretation is appealing as the curva-
ture is a geometric invariant and, as such, is independent from
the coordinates that are used to define the signal. However,
the analogy also comes with some unexpected byproducts,
e.g., the fact that, if the curve has three (or more) dimensions,
then there exist more than one invariant (and, hencemore than
one frequency) that define the trajectory [30].

C. CONTRIBUTIONS
The contributions of this work are twofold. First, it provides
an overview of the existing transforms that have been tradi-
tionally utilized to define the ‘‘frequency’’ of a signal. This
overview prepares the ground for presenting the paradoxes

of IF. While the focus of this overview is on FT, HT and
analytic signals, we also discuss the links of these techniques
with quantities and techniques employed in circuit theory and
power system analysis, such as phasors, Harmonic Analysis
(HA) and Clarke Transform (CT). The second contribution
is to show that conventional techniques can be revisited in
terms of a geometric approach. This approach is used as a
general framework where FT, HT and analytic signals (and
hence also phasors, HA and CT) can be interpreted in terms
of special systems of coordinates and curves. The paradoxes
of the IF are then revisited using this framework.

D. ORGANIZATION
The remainder of this paper is organized as follows. Section II
presents conventional techniques for the definition of the
frequency of a signal. This section also presents the classical
paradoxes of the IF. Section III introduces the geometric
approach that is utilized in the paper to revisit conventional
techniques and the paradoxes. Section IV discusses the pro-
posed approach by means of analytic examples and a case
study based on an EMT model of the IEEE 39-bus system.
Section V draws relevant conclusions.

II. BACKGROUND ON FREQUENCY AND TIME
ANALYSIS
Electrical quantities such as the voltage and the current can
be expressed, as many other quantities in physics and engi-
neering, as functions of time t . For example, a steady-state ac
voltage can be represented in time domain as:

v(t) = V cos(ωot), (1)

where V and ωo are the amplitude and the angular frequency,
respectively, of the voltage.

In signal processing, ‘‘signals’’ are also often called ‘‘time
waveforms’’, which stresses the attention on the wave-like
and thus potentially periodic nature of signals. However,
in the remainder of this work we refrain from considering that
signals are necessarily periodic. On the contrary, we focus
precisely on the cases for which signals undergo a transient.
Using the notation of (1), one has:

v(t) = V (t) cos
(
ϑ(t)

)
, (2)

where V (t) and ϑ(t) are arbitrary functions of time.

A. FOURIER TRANSFORM (Ft)
The FT (or spectrum) of the signal v(t) is defined as:

v(ω) = F [v] (ω) =
1
√
2π

∫
v(t)e−ωtdt, (3)

where  is the imaginary unit and the integral has to be
intended to be calculated in the range t ∈ (−∞,∞). The
function v(ω) provides a representation of the signal v(t) in
the frequency domain or space. The fact that the frequency
domain is, in effect, an alternative space with its own coordi-
nate, has a relevant role in the discussion given in this paper
and is thus a point that we wish to highlight here.
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The FT works the best, and in fact it was invented specifi-
cally for, stationary periodic signals. For (1), one obtains:

v(ω) = F [V cos(ωot))] (ω)

=
√
2π V

2

(
δ(ω − ωo)+ δ(ω + ωo)

)
, (4)

which is a spectrumwith non-null values only in−ωo andωo,
as the time-domain signal has only one frequency. The idea of
the FT is that, if a signal can be expressed (or approximated)
with a series of sinusoids, then one obtains a sharp spectrum
with only values corresponding to the frequencies of the
sinusoids that compose the time-domain signal.

The application of the FT to power system analysis has
found its natural field in the HA, i.e. the study of the effect
of frequencies multiple of the fundamental one in stationary
conditions, e.g., see [31]. In a HA, a signal can be represented
as a sum of sinusoids and, possibly, a non-null constant term:

v(t) =
∑
h

Vh cos(hωot + θh) , h ∈ {0, 1, . . . , n}, (5)

which can be conveniently studied in the frequency domain
{0, ωo, . . . , hωo, . . . , nωo} rather than in the time domain.

Difficulties arise, however, when the signal is not periodic.
The spectrum becomes a continuum rather than a set of sharp
frequency values. Moreover, the integral of (3) has to be
calculated for t ∈ (−∞,∞), which is impractical for the vast
majority of real-world applications. This issue is particularly
relevant if one wants to apply the (discrete) FT to a measured
voltage that evolves during an electromechanical transient.

Several patches, more or less sophisticated, have been pro-
posed to compensate the inevitable approximations required
to calculate the FT of a non-stationary signal. The most
used approach is the short-time discrete Fourier transform
(sDFT). This utilises a ‘‘windowed’’ signal, i.e. the actual
signal is multiplied by a function that is nonnull only in the
interval of time of interest for the estimation of the frequency.
While the sDFT makes possible the calculation of the Fourier
transform as it restricts the integration of the signal to a finite
interval, it also introduces, as it is to be expected, some issues,
such as aliasing and spectral leakage. The literature provides
plenty of techniques to reduce the impact of these issues
on the estimation. Among these, the appropriate choice of
the window profile and length, sampling rate, and spectral
interpolation. The literature on this topic is vast. We refer the
reader to the review of most common techniques provided
in Chapter 3 of [32]. Relevant recent works are, e.g., [18]
and [33]. The main conclusion that can be drawn from exist-
ing literature is that the FT can be adapted to transient signals
and provide a relatively good estimation of the frequency
variations. It remains, however, the fundamental issue that the
FT is meant for stationary periodic signals.

B. HILBERT TRANSFORM (HT) AND ANALYTIC SIGNALS
For the definition of the Instantaneous Frequency (IF) it is
convenient to define a mathematical object called analytic
signal. This is a complex quantity, which is calculated from

the signal v(t) as follows:

ṽ(t) = v(t)+


π

∫
v(r)
t − r

dr . (6)

This simplified notation is also utilized in the remainder of
this paper. The imaginary part of ṽ(t) is the HT of v(t) [14]:

H[v](t) = v̂(t) =
1
π

∫
v(r)
t − r

dr . (7)

The analytic signal ṽ(t) can thus be written equivalently as:

ṽ(t) = v(t)+  H[v](t) = v(t)+  v̂(t). (8)

Differently from most transforms utilized in signal pro-
cessing, the HT retains the domain of the signal and, in fact,
returns a function of time. It is relevant to observe since now
that the HT is often interpreted as a rotation of −π/2 of the
signal to which it is applied. This notion is justified from the
fact that the HT of the sine and cosine functions are:

H[cos](ωt) = sin(ωt), (9)

H[sin](ωt) = − cos(ωt), (10)

for ω > 0. For negative frequencies, the signs of the
right-hand side of the equalities above are swapped. To avoid
this issue, analytic signals are conventionally defined only for
ω > 0. The rotation can be formalized observing that:

F
[
v̂
]
(ω) = − F [v] (ω), ω > 0. (11)

While it is intuitive to appreciate a rotation of a periodic
signal, less clear is the meaning of a rotation for an arbitrary
signal.

It is also relevant to note that the effect of the HT has a
resemblance with that of the time derivative of the signal:

F
[
v′
]
(ω) =  ωF [v] (ω), (12)

where v′(t) = dv(t)
dt . Merging (11) and (12) gives:

F
[
v̂
]
(ω) = −F

[
v′
]
(ω)
/
ω, (13)

and, hence:

v̂(t) = −F−1
[
F
[
v′
]
(ω)
/
ω
]
(t), (14)

which shows how the HT of a signal is related to the FT of
the signal itself as well as the way to calculate it.

The Bedrosian theorem provides an important property of
the HT. This theorem proves that if two functions f̃ (t) and g̃(t)
are analytic and if f(ω) = F

[
f̃
]
(ω) vanishes for |ω| > a and

g(ω) = F
[
g̃
]
(ω) vanishes for |ω| < a, where a is a positive

constant, then the following identity holds:

H
[
f̃ g̃
]
(t) = f̃ (t)H

[
g̃
]
(t). (15)

The Bedrosian identity (15) has a special role in power
system analysis and the estimation of frequency variations
during electromechanical transients. In fact, in electrome-
chanical transients, the time-varying amplitude of the volt-
age has a low-frequency spectrum that does not overlap
the high-frequency spectrum of the phase of the voltage
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itself [17]. In turn, thus, if the voltage is expressed by (2)
and is undergoing an electromechanical transient, applying
the HT to v(t) gives:

H[v](t) = H[V cos(ϑ)](t) = V (t)H[cos(ϑ)](t)

= V (t) sin(ϑ(t)). (16)

Hence, the analytic signal of the voltage can be written as:

ṽ(t) = V (t) (cos(ϑ(t))+  sin(ϑ(t))) = V (t) e ϑ(t), (17)

and, hence, its IF can, in theory, be calculated without having
to know V (t). We say in theory because one has to be able
to calculate H[v](t), which is obtained as an integral for
t ∈ (−∞,∞). This issue is further discussed in Section II-E
and constitutes, in effect, one of the five paradoxes of the IF.
Another issue is that, in practice, the (discrete) HT is in fact
calculated using the (discrete) FT and its inverse as indicated
by (14). Thus, apart from its intrinsic issues, the utilization
of the HT also suffers of the issues of the FT discussed in
Section II-A.
The notation of (17) is well-known in the analysis of ac

circuits and power systems, where, for historical reasons,
is called phasor and is generally utilized in stationary condi-
tions and shifted by the fundamental frequency ωo. In ac cir-
cuit analysis, the HT and analytic signals are not well-known
nor needed, as a matter of fact, for the definition of phasors.
This is because phasors, by definition, are characterized by
a unique frequency, say ωo. On the other hand and for the
same reason, the phasors of a circuit require to be referred
to a common reference phase angle, say θo, which defines
unequivocally yet arbitrarily the coordinates – rotating with
angular speed ωo – with respect to which the real and imag-
inary parts of the phasors are defined. In turn, thus, phasors
are analytic signals shifted by ωot + θo.

Finally, it is relevant to observe that, given the linearity of
the HT, applying it to the signal defined in (5) gives:

H
[∑

h

Vh cos(hωot + θh)

]
(t)

=

∑
h

H[Vh cos(hωot + θh)](t)

=

∑
h

Vh sin(hωot + θh), (18)

and, hence, one can define the analytic signal of a sum of
sinusoids as the sum of the analytic signals of these sinusoids.
Thus, the analytic signal associated with each harmonic h is:

ṽh(t) = Vh cos(hωot + θh)+ Vh sin(hωot + θh). (19)

C. CLARKE TRANSFORM (CT)
We have considered so far exclusively an individual ‘‘sig-
nal,’’ which can be opportunely manipulated with time-
and frequency-domain transforms. Power systems, however,
are mostly three-phase circuits. The voltage of a node is
thus a triplet of measurements rather than a single quantity.
Of course, one can treat the voltage of each phase as a signal

FIGURE 1. Balanced positive-sequence three-phase voltage with
V = 12 kV.

and proceed with the analysis discussed so far. But having
more then one phase provides additional information.

The framework proposed in this paper extends the notion
of a signal to that of a ‘‘curve’’ and, as such, it assumes
a multi-dimensional space. Limiting our analysis to three
dimensions, the phases of an ac three-phase system appear
as ideal candidates for the definition of such a space. Under
certain conditions, however, the dimension of this space can
be reduced to two. This is, in turn, the goal of the CT.

Let vabc(t) = (va(t), vb(t), vc(t)) be the voltage triplet of
a three-phase node. The CT applied to this signal returns
another triplet, say vαβγ (t) = (vα(t), vβ (t), vγ (t)) calculated
as:

vαβγ (t) = C vabc(t)

=
2
3


1 −

1
2

−
1
2

0

√
3
2

−

√
3
2

1
√
2

1
√
2

1
√
2


va(t)vb(t)
vc(t)

 . (20)

In general, the three components of vαβγ (t) are non-null.
However, in the special case of balanced voltages, namely:

va(t) = V (t) cos
(
ϑ(t)

)
,

vb(t) = V (t) cos
(
ϑ(t) − 2

3π
)
,

vc(t) = V (t) cos
(
ϑ(t) + 2

3π
)
, (21)

the CT gives:

vα(t) = V (t) cos
(
ϑ(t)

)
,

vβ (t) = V (t) sin
(
ϑ(t)

)
,

vγ (t) = 0. (22)

The latter expression can be rewritten as a complex quantity:

v̄(t) = vα(t)+  vβ (t), (23)

which has a striking resemblance with an analytic signal.
This can be readily observed in Fig. 1 that shows a balanced
positive-sequence three-phase voltage. The curve generated
by the voltage vabc(t) is a circle that lies in the plane (vα, vβ ).
Reference [30] shows that imbalances in the amplitude and/or
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phase angles of the voltage also lead to a plane curve, typi-
cally an ellipse rather than a circle. However the plane of such
curve is not the plane defined by the αβ-frame.
The quantity defined in (23) is not, in general, an analytic

signal as it can contain negative frequencies. The simplest
case for which this happens is the stationary conditions for
which the voltage vαβγ (t) contains a positive and a nega-
tive sequence. Then, applying the symmetrical component
transform and observing that the CT is a linear operator, one
obtains:

v̄(t) = v̄+(t)+ v̄−(t)

=
(
v+α (t)+  v

+

β (t)
)
+
(
v−α (t)+  v

−

β (t)
)
, (24)

where v̄+(t) has angular frequency ωo and v̄−(t) has angular
frequency −ωo. Clearly, v̄+(t) is an analytic signal. At this
point, one might raise the question why analytic signals are
defined only for positive frequencies. This is a consequence
of the fact that they are obtained starting from a single signal,
not a triplet. This leads to have no way to define the sign
of the frequency itself. In fact, the spectrum of a signal is
symmetrical and one can use conveniently only the part for
ω > 0, which is the common choice for analytic signals.
Finally, we note that applying the Park transform to v̄(t) in

(23) leads to the Park vector [34]. According to the discussion
above, the Park vector, like more conventional phasors, is just
v̄(t) shifted by ωpt + θp, where ωp and θp are the angular
speed and the phase reference of the Park dq-axis rotating
frame. From this definition, it descends that, in stationary
conditions and for ωp = ωo, the Park vector ‘‘downgrades’’
to a phasor. Equivalently, phasors can be seen as steady-state
Park vectors.

D. INSTANTANEOUS FREQUENCY (IF)
The importance of the HT is largely due to the fact that it
allows determining the IF of a time-varying signal. We note
that, since an analytic signal is a complex quantity, one has:

ṽ(t) = v(t) e φ(t), (25)

where

v(t) = |ṽ(t)| =
√
v2(t)+ v̂2(t),

φ(t) = 6 ṽ(t) = arctan
(
v̂(t)
v(t)

)
. (26)

Then, the IF is defined as:

φ′(t) =
v(t)v̂′(t)− v̂(t)v′(t)

v2(t)
. (27)

This definition has a very clear meaning only for signals
in the form of (2), for which v(t) = V (t) and φ(t) = ϑ(t),
and, consequently, ϑ ′(t) coincides with the IF. However,
in the most general case, φ(t) is not simply the phase of the
original signal. Perhaps the simplest example that shows this
underlying complexity is the case of a signal composed of
two harmonics:

v(t) = V1 cos(ω1t)+ V2 cos(ω2t), (28)

FIGURE 2. Representation of signal (28) and its IF.

with ω1 > 0 and ω2 > 0, which leads to the following
analytic signal:

ṽ(t) = V1 e ω1t + V2 e ω2t , (29)

and to the following expression of the IF [13]:

φ′(t) =
1
2
(ω2 + ω1)+

1
2
1ω

V 2
2 − V

2
1

v2(t)
, (30)

where 1ω = ω2 − ω1, and:

v2(t) = V 2
1 + V

2
2 + 2 V1V2 cos(1ω t). (31)

Equation (30) shows that the IF of the signal (28) is, in gen-
eral, not equal to ω1 and ω2 and, in fact, is not even constant
if V1 6= ±V2. Figure 2 illustrates the results obtained above
assuming ω1 = 10, ω2 = 70, V1 = 20, V2 = 10. The shape
of the IF is somewhat surprising as the intuition would lead
to think that the IF of a signal the positive spectrum of which
contains only two frequencies, namely ω1 and ω2 should be
a simpler expression or, at least, a constant value.

E. THE FIVE PARADOXES OF INSTANTANEOUS
FREQUENCY
We are ready to present the paradoxes of the IF mentioned
in the title of the paper. In Chapter 2 of the book ‘‘Time-
frequency analysis,’’ Leon Cohen presents five paradoxes on
the IF [13]. These paradoxes are well-known in the area of
signal processing. The time-frequency analysis is in effect an
attempt to overcome the apparently irreconcilable differences
between time and frequency domains by merging them into a
unique framework.

We report verbatim below the five paradoxes as written by
Cohen in [13].
P1: IF may not be one of the frequencies in the spectrum.
P2: If we have a line spectrum consisting of only a few

sharp frequencies, then the IF may be continuous and
range over an infinite number of values.

P3: Although the spectrum of the analytic signal is zero for
negative frequencies, the IF may be negative.

P4: For a band-limited signal the IF may go outside the
band.

P5: If the IF is an indication of the frequencies that exists
at time t, one would presume that what the signal did a
long time ago and is going to do in the future should be
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of no concern; only the present should count. However
to calculate the analytic signal at time t we have to
know the signal for all time.

The expression (30) obtained for signal (28) of the example
given in the previous section illustrates well the paradoxes P1
to P4. It appears that P1 to P4 constitute different hues of the
same issue and can be reformulated as follows:
P0: The range of the spectrum of an analytic signal is,

in general, different from the range of the IF of the same
signal.

The fifth paradox, on the other hand, refers to a differ-
ent but equally crucial inconsistency: the HT – as the FT
– requires to calculate the integral of the signal for t ∈
(−∞,∞).1 This appears to be a contradiction when one is
only interested in the current time t . From a practical point of
view, moreover, the knowledge of a signal for t ∈ (−∞,∞)
can be obviously achieved only through an approximation,
e.g., assuming that certain steady-state conditions have been
and will be in place forever.

In [13], there is no attempt to solve these paradoxes, except
for an interesting discussion on P5, which argues that the
inconsistency arises for the twofold nature – local and non-
local – of signals [35]. For example, light is local when
interpreted as a particle and non-local when interpreted as a
wave. It is also interesting to note that the paradoxes above
are formulated from the point of view of the FT or, at least,
of the HT. The underlying assumption in the whole [13] as
well as in most works on signal processes is that the FT is
right, so one has to reconcile the IF with it. However, it would
be equally legitimate to discuss the inconsistencies between
the FT and the IF of a signal from the point of view of the IF,
i.e. assuming that the IF is right and trying to reconcile the
FT with it.

In this work, we do not take the side of either approach.
We propose a geometric framework that assumes that both
the IF (actually, a slightly more general concept, namely the
curvature, which is introduced in the next section) and the
FT (or any other time/frequency transform, in fact) are both
right and we explain why they seem to provide different
information. This is the topic of the next section.

III. GEOMETRICAL INTERPRETATION
This section approaches the problem of defining the transient
behavior of a signal from a completely different point of
view with respect to Section II. In the same vein as [35],
one can argue that the underlying approach of the techniques
described in Section II is to consider the signal a wave, and,
as such, to study its properties non-locally, i.e., taking the
time as a unique block ranging from −∞ to ∞. One may
also argue that the approach described below is intrinsically
local, as it studies the properties of signal as a particle

1The discrete HT transform is obtained, in practice, based on the discrete
FT. Hence, the windowing techniques of the short-time discrete FT described
above to overcome the need for the calculation of an integral for t ∈
(−∞,∞) can be applied also to the calculation of the HT. The reader is
referred to [14] for more details on the numerical calculation of the HT.

the trajectory of which is known at a given position and
a given time. Yet, this interpretation must be reconsidered
as the paradoxes described in Section II-E arise using only
non-local approaches such as the HT. The purpose of this
section is thus twofold: to introduce first some elementary
concepts of differential geometry and then use these con-
cepts to define a common framework where both local and
non-local approaches consistently coexist.

A. SPACE CURVES
The starting point of any geometry is to define a system of
coordinates. It is easy to accept that the coordinates of a
physical space are three. Extension to a fourth coordinate,
time, is less intuitive and a relatively recent extension. Multi-
dimensional spaces defined, for example, in string theories,
are even more recent and, for many, quite exotic spaces.

When dealing with electric circuits and power systems,
it is much less clear how many dimensions should be con-
sidered. In this work, for simplicity, we consider three, for
the three-phase circuits and machines that are typically used
in power systems. It is important to note however that this
choice is not a hard limit. Higher dimensions can be taken
into account and there exists the math to do that, see e.g. the
gentle introduction to frames of arbitrary dimensions given
in [36].

Assuming thus three dimensions as a non-binding con-
straint, let us consider a space curve x(t) : [0,+∞) →
R3 with x(t) = (x1(t), x2(t), x3(t)). It is convenient and usual
to define an orthonormal basis, say (e1, e2, e3), to describe
the vector x(t), namely:

x(t) = x1(t) e1 + x2(t) e2 + x3(t) e3. (32)

A common choice for the basis is the Cartesian coordinates:

e1 = (1, 0, 0),

e2 = (0, 1, 0), ⇒ e123 = I3,

e3 = (0, 0, 1).

(33)

but, in turn, any triplet of linearly independent vectors that are
orthonormal is perfectly fine. For example, the rows of the
CT matrix C in (20) define a relevant basis in power system
analysis.2

In differential geometry, it is of particular relevance to
define quantities that are invariant, that is, do not change
when the basis of the coordinates changes. The most intuitive
invariant is arguably the length s of the curve, defined as:

s(t) =
∫ t

0

√
x′(r) · x′(r) dr + s0, (34)

from which one obtains the expression:

s′(t) =
d
dt
s(t) =

√
x′(t) · x′(t) = |x′(t)|, (35)

2Note that C is not orthogonal. If a power invariant transform is required,

C is replaced with
√

3
2C, which is orthogonal.
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where

x′(t) = d
dt (x1(t) e1(t))+

d
dt
(x2(t) e2(t))+

d
dt
(x3(t) e3(t)),

(36)

and · represents the inner (or scalar) product of two vectors,
hence:

x′(t) · x′(t) = x21 (t)+ x
2
2 (t)+ x

2
3 (t). (37)

Equation (36) is written assuming that, in general, the basis
e123(t) is time-dependent. The matrix of the Park transform,
say P(t), is a relevant example of time-dependent basis:

P(t) =

 cos
(
ϑp(t)

)
sin
(
ϑp(t)

)
0

− sin
(
ϑp(t)

)
cos

(
ϑp(t)

)
0

0 0 1

C, (38)

where ϑp(t) = ωpt + θp.
According to the chain rule, the derivative of x(t) with

respect to s(t) can be written as:

ẋ(t) =
dx(t)
ds(t)

=
dx(t)
dt

dt
ds(t)

=
x′(t)
s′(t)
=

x′(t)
|x′(t)|

, (39)

where the unit vector ẋ(t) is tangent to the curve x(t).
We now define an important moving (e.g., time-dependent)

frame, called Frenet frame, that is defined locally for every
point of a smooth curve x(t). This frame is built with the
tangent vector, which is defined in (39), the normal vector
and the binormal vector, as follows:

F(t) =

T (t)N(t)
B(t)

 =
 ẋ(t)
|ẍ(t)|−1 ẍ(t)
T (t)× N(t)

 , (40)

where× represents the cross product. The vectors in (40) are
orthonormal, i.e. T (t) = N(t)×B(t) andN(t) = B(t)×T (t),
and satisfy the following relations, known as Frenet-Serret
formulas [37]:

Ṫ (t) = κ(t)N(t),

Ṅ(t) = −κ(t)T (t)+ τ (t)B(t),

Ḃ(t) = −τ (t)N(t), (41)

where κ(t) and τ (t) are the curvature and the torsion, respec-
tively, which are given by:

κ(t) = |ẍ(t)| = |x′(t)× x′′(t)|
/
|x′(t)|3, (42)

and

τ (t) =
x′(t) · x′′(t)× x′′′(t)
|x′(t)× x′′(t)|2

. (43)

The quantities defined above, namely κ(t) and τ (t) may vary
from point to point but are invariants, like s(t), which means
that, while local, do not depend on the coordinates employed
to describe the curve.

B. FREQUENCY AS AN INVARIANT
As discussed in the introduction, references [29] and [30]
present an interpretation of electrical quantities as geomet-
rical invariants of a space curve. The whole argument is
based on two assumptions. First, the voltage (current) is
the velocity of the trajectory of the magnetic flux (electric
charge). This assumption is supported by Faraday’s law for
the voltage and by the very definition of current intensity as
the flow of electric charges through a surface. The leap of
this assumption is that the magnetic flux and electric charge
flow can be assumed to be ‘‘curves,’’ even though, in practice,
they are scalar quantities and, when measured, they can be
more naturally thought as signals rather than space curves.
However, if one accepts this assumption, and recalling the
definitions given in the previous section, then the following
expressions for the voltage can be obtained:

v(t) ≡ x′(t), (44)

and, from (42):

κ(t) =
|v(t)× v′(t)|
|v(t)|3

, (45)

and, from (43):

τ (t) =
v(t) · v′(t)× v′′(t)
|v(t)× v′(t)|2

. (46)

We note that neither (45) not (46) depend on x(t), which in
this context is the vector of the magnetic flux. This is good
news as the magnetic flux is not an easy quantity to measure
or estimate.

Finally, we observe that, from (39) and (44), one obtains:

d
dt
s(t) = |v(t)|, (47)

which, in a non-relativistic framework, is also an invariant.
Reference [30] defines the azimuthal angular frequency as:

ωκ (t) = |v(t)| κ(t), (48)

which can be interpreted as the angular speed in the plane
formed by the vectors T (t) and N(t); and the torsional angu-
lar frequency as:

ωτ (t) = |v(t)| τ (t), (49)

which can be interpreted as the angular speed in the plane
formed by the vectors N(t) and B(t).

The torsional angular frequency exists only for curves of
dimensions higher than two (i.e., τ (t) ≡ 0 for plane curves).
The examples discussed in [30] show that, for three-phase
circuits,ωτ (t) 6= 0 for voltages with unbalanced phase angles
and/or harmonic content.

On the other hand, we observe that, for balanced and
positive sequence voltages, the azimuthal angular frequency
ωκ (t) coincides in effect with the IF defined in (27). That is,
merging (24), (27) and (45) and assuming v̄−(t) = 0, then:

ωκ (t) ≡ ϑ ′(t) ≡ φ′(t). (50)
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Finally, we note that all the formulas given in this section
are ‘‘instantaenous’’, i.e., utilize only qunatities at a given
time t . As opposed to the FT and HT, thus, these formulas
do not require the calculation of integrals for t ∈ (−∞,∞).
However, the estimation of ωκ (t) and ωτ (t) does require the
calculation of time derivatives, which poses practical chal-
lenges. This point is further discussed in Section IV-D.

C. REVISITING THE PARADOXES OF THE
INSTANTANEOUS FREQUENCY
We are ready to revisit the paradoxes presented in
Section II-E. The geometric approach discussed above shows
that there is, in fact, no inconsistency between FT and IF.
In turn, the two approaches discuss different things. The
frequency of the spectrum is in effect a ‘‘coordinate’’ that can
be used to represent the signal, whereas IF is a quantity that
represents a property of a curve. Since there is no point to
compare a coordinate with a quantity, paradoxes P0 to P4 are
cleared.

The discussion of paradox P5 is more involved. We start
by observing that the IF can be, under certain conditions,
an invariant of the signal for which is calculated. Assuming
that the signal is a curve, the calculation of the curvature
depends on the number of coordinates required to represent
the curve. For two-dimensional signals, the curvature (and
hence the IF) is an invariant and represents a local property of
the curve. For higher-dimensional curves, the curvature is still
an invariant but one can also define others. In turn, a space (or
higher-dimension) curve has more than just one frequency.
Space curves have two: ωκ (t) and ωτ (t). The azimuthal angu-
lar frequency ωκ (t) coincides with the common notion of
IF only if the system is balanced and has only the positive
sequence. In this case, in fact, the three-phase signal can be
represented as a pair of quantities that is equivalent to an
analytic signal.

A single-phase voltage or, more in general, a single signal
has an additional issue: the curvature does not exist in one
dimension. Yet, a signal is defined by two (possibly time-
variant) quantities: amplitude and phase, which suggests that
it can be described in a two-dimensional space. Thus, the first
step is to define a set of coordinates. This is usually an implicit
operation in ac circuit analysis as all phasors are, in effect,
analytic signals shifted by the reference angular frequency
and referred to a common reference phase angle. On the
other hand, in signal processing, the operation of defining a
set of coordinates is provided by the HT which generates a
coordinate shifted by −90◦ with respect to the coordinate of
the signal itself.

This observation allows reconsidering paradox P5. The fact
that one has to calculate HT of the signal for t ∈ (−∞,∞)
has not to be interpreted as an inconsistency of the calculation
of the IF. The function of the HT is just that of allowing
the definition of a system of Cartesian coordinates for the
signal. Now, the HT dictates that, to be able to define such
a coordinate, one needs to know the full signal. In stationary
ac circuits, the knowledge of the full signal is not needed

simply because every quantity only has one frequency (ωo)
or multiples of it (harmonics hωo). With this assumption,
it is possible to define an absolute reference angle and,
hence, a set of coordinates, without the need of calculating
the HT.

IV. TOWARDS A UNIQUE GEOMETRIC FRAMEWORK
The identities given in (50) are an important result as they
constitute the conditions for which the HT, analytic signals,
CT and the geometric approach agree on what is the ‘‘fre-
quency’’ of a signal.

To have a common framework that connects all the trans-
forms that we have discussed so far, it remains to accommo-
date the FT. With this aim, we observe that if ϑ(t) = ωot ,
then one obtains:

ωκ (t) ≡ ϑ ′(t) ≡ φ′(t) ≡ ωo, (51)

which is an expected result but does not help understand
the relationship between the various approaches. When there
is only one constant frequency in a balanced system, then
it comes with no surprise that, independently of how one
proceeds, the angular frequency is always the same. One
can also argue that the case of unique constant frequency
is exactly the case for which one does not need to estimate
the frequency at all [5]. And, as a matter of fact, when
studying balanced stationary ac circuits with phasors, the
angular frequency is not needed in the equations other than
for calculating reactances and susceptances.

The remainder of this section discusses a variety of
examples, as follows: Section IV-A revisits the voltage
of (28) in view of the geometric approach discussed
above; Section IV-B discusses the case of a balanced
three-phase voltage resembling an electromechanical tran-
sient; Section IV-C discusses two relevant cases of stationary
unbalanced three-phase voltages; and Section IV-D compares
the frequency estimation of a conventional PLL with that
obtained using the geometric approach.

A. SINGLE VOLTAGE WITH TWO HARMONICS
Let us consider the case for which the voltage contains more
than one frequency. We utilize again the voltage of (28).
As per the FT, this signal is represented through a sharp
spectrum with two Dirac δ functions, as shown in Fig. 3.a.
We can also represent this signal in the state-space (v(t), v̂(t)),
as shown in Fig. 3.b. The latter representation is justified from
the observation that the HT of a signal shifts it by −90◦.

The proposed framework assumes that the analytic
signal and FT define a surface mapped by (t, ω) on
the three-dimensional space described by the coordinates
(u, û, ω). The representation of the signal of (28) in this space
is shown in Fig. 4. Since the spectrum of this signal is discrete,
there is no actual surface in this case. For every value of ω,
this space represents the content of the analytic signal for
t ∈ (−∞,∞). For the signal (28), this content is null except
for ω = {ω1, ω2} and the signal can be represented in the
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FIGURE 3. Representation of the signal (28).

FIGURE 4. Representation of the signal (28) in the space (u, û, ω).

space (u, û, ω) as:

v(t, ω) =

v1(t)δ(ω − ω1)+ v2(t)δ(ω − ω2)
v̂1(t)δ(ω − ω1)+ v̂2(t)δ(ω − ω2)
ω1δ(ω − ω1)+ ω2δ(ω − ω2)

 , (52)

where v1(t) = V1 cos(ω1t) and v2(t) = V2 cos(ω2t). Most
importantly, for every value of ω, the curve is a circle, which
has constant curvature and constant IF equal to the compo-
nents of v(t, ω) on the ω-axis itself. In this simple example,
there are only two circles and the IF becomes:

φ′(t, ω) = ω1 δ(ω − ω1)+ ω2 δ(ω − ω2). (53)

On the other hand, the curvature κ(t) – and thus ωκ (t), which
in this example is given by (30) – of the signal is an invariant
and must remain the same, regardless which reference is
utilized. This implies that the orthonormal basis that allows
projecting the plane (v, v̂) onto the surface defined by the
variables (t, ω) of the space (u, û, ω) is time-dependent and
rotates with an angular frequency that is a function of ωκ (t).3

Fortunately, one does not have to find explicitly the equations
of this projections, as κ(t) and ωκ (t) can be obtained directly
from (45) and (48), respectively.

Finally, one can view the plots of Fig. 3 with a different
perspective. On the one hand, v(ω) is the projection of ṽ(t)
onto the ω-axis, which is, in effect, the meaning of the inte-
gral (3) that defines the FT. On the other hand, ṽ(t) can be
interpreted as the projection of v(ω) onto the space (v, v̂).

3The projection of a two-dimensional space onto a surface of a
three-dimensional one is a common operation in differential geometry.
This operation is called mapping. For example, complex numbers can be
represented unequivocally on the surface of a sphere through a conformal
stereographic projection (see, for example, [38]).

FIGURE 5. Representation of the voltage (54).

B. THREE-PHASE VOLTAGE RESEMBLING AN
ELECTROMECHANICAL TRANSIENT
So far, we have discussed the case of a single signal. As dis-
cussed in Section II-C, balanced three-phase systems with
only the positive sequence are equivalent to a single signal
assuming the use of the space (uα, uβ , ω) rather than (u, û, ω).

To illustrate the proposed framework for a non-stationary
case, we consider another example that resembles the
dynamic performance of a voltage during a typical elec-
tromechanical transient. To this aim, we consider the fol-
lowing balanced positive-sequence three-phase voltage in CT
coordinates:

vαβγ (t) =

Vo (cos(ωot)+ 0.1 cos(ωot + ψ(t)))
Vo (sin(ωot)+ 0.1 sin(ωot + ψ(t)))

0

 , (54)

where Vo = 10 kV and ωo = 2π 60 rad/s and

ψ(t) = e−t cos(0.1 t). (55)

Figure 5 shows the spectrum of the signal obtained with a
discrete sine transform in the interval t ∈ [0, 5] s as well as
its representation in the state-space (vα, vβ ). As expected, the
spectrum is concentrated close to 377 rad/s but does not have
a simple representation as the one of the signal (28).

The IF, which in this case coincides with ωκ (t), can be
calculated from the trajectory in the coordinates (vα, vβ ) with
an expression similar to (27), as:

φ′(t) = ωκ (t) =
vα(t)v′β (t)− v

′
α(t)vβ (t)

v2α(t)+ v
2
β (t)

. (56)

Figure 6 shows the IF obtained with (56) as well as the
transient behavior of the dq-axis component calculated using
the Park transform matrix given in (38) with ϑp = ωot:

vd (t) = 10+ cos
(
ψ(t)

)
,

vq(t) = sin
(
ψ(t)

)
. (57)

Note that in Park coordinates the IF is the same as that
obtained with Clarke coordinates – as it has to be – and has
the following expression:

φ′(t) = ωo +
v′q(t)vd (t)− v

′
d (t)vq(t)

v2d (t)+ v
2
q(t)

= ωo + φ
′
p(t). (58)
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FIGURE 6. Representation of the voltage (54) and its IF.

FIGURE 7. Representation of the voltage (54) in the space
(uα,uβ , ω).

The curve shown in Fig. 6.a has IF equal to φ′p(t) but its ωκ (t)
is invariant as the dq-axes are rotating with angular speed ωo.
In the same vein as the previous example, one can represent

the voltage in a three-dimensional space (uα, uβ , ω). This is
shown in Fig. 7. The information given in these coordinates is
the same as that in Figs. 5 and 6. However, since the harmonic
content of the voltage is not trivial, the information that can
be obtained from this representation is not straightforward.
The best representation is, in this case, that provided by the
Park transform, which explains its common utilization in the
study of electromechanical transients of power systems.

It appears, thus, that the spectrum of a transient voltage
is not particularly representative of the transient itself. There
exist, of course, a variety of techniques to properly window
the measurements of the voltage to obtain an estimation of its
IF (see, e.g., [18]) but all of these techniques have the intrinsic
limitation that the FT is not suited for non-stationary signals.

Finally, we note that the ω coordinate introduced by the FT
is only incidentally a frequency. Other transforms use func-
tions other than sines and cosines, and may be characterized
by different parameters. For example, wavelets are based on
the sinc function and the wavelet decomposition consists in
finding a scale a and a shift factor b of each wavelet that form
the original signal [39].

C. UNBALANCED THREE-PHASE VOLTAGE
The examples so far have shown cases for which φ′(t) =
ωκ (t). This is, however, not always the case. The simplest sce-
nario for which the azimuthal frequency is not as expected is
a voltage vector with unbalanced amplitudes. Let us consider

FIGURE 8. Representation of the voltage (59) and its ωκ (t) and IF.

FIGURE 9. Representation of ωκ (t) and ωτ (t) of the voltage (61).

the following example:

va(t) = 12 cos(ωot),

vb(t) = 20 cos(ωot − 2
3π ),

vc(t) = 12 cos(ωot + 2
3π ), (59)

where the amplitudes are in kV and ωo = 2π 60 rad/s. One
can readily observe that ωτ (t) = 0, hence the curve described
by vabc(t) lies in a plane. However, this plane is not (α, β) as
vγ (t) 6= 0 (see Fig. 8.a). Moreover, the curve is not a circle,
because ωκ (t) is not constant (see Fig. 8). The curve is in fact
an ellipse with periodic ωκ (t). This result is consistent with
the definition of ωκ (t) but, of course, it is not the expected
result. The issue is that vabc(t) contains positive, negative
and zero sequences. Applying the Fortescue symmetrical
component transform in phasor domain, in fact, one obtains:

v̄o = −4−  6.93,

v̄+ = −4+  6.93,

v̄− = 44+  0, (60)

and, thus, vabc(t) is not an analytic signal. Only after filtering
the negative and zero sequences, one can obtain the expected
result, namely φ′(t) = ωo. Finally, note that, in this case, the
spectrum coincides with the expected value of the IF.

Let us now show how unbalanced phases lead to a nonnull
torsional frequency. Consider the three-phase voltage:

va(t) = 12 cos(ωot + 0.05π sin(0.6 t)),

vb(t) = 12 cos(ωot + 0.05π sin(0.6 t)− 2
3π ),

vc(t) = 12 cos(ωot + d 0.05π sin(0.6 t)+ 2
3π ). (61)

Figure 9 shows two cases: d = 1 and d = 1.1. The
latter introduces an imbalance in the voltages that leads to
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FIGURE 10. Scheme of the synchronous reference frame PLL.

high-frequency oscillations of ωκ (t) and ωτ (t). These oscil-
lations can be easily filtered. However, the two examples
discussed in this section pose the question whether, in real-
world applications, small imbalances can significantly distort
ωκ (t). This point is further discussed in the following section.

D. FREQUENCY DURING POWER SYSTEM TRANSIENTS
In high-voltage transmission systems, harmonics and imbal-
ances are minimized by design and proper filtering, in order
to comply with network codes. One has thus to expect that,
in most cases, ωκ (t) and the IF return fairly similar values.
In this section, we support this statement by comparing the
estimation of the frequency as obtained with a PLL and the
one obtained with (45) starting from the voltage vector vabc(t)
at the bus of a high-voltage transmission system.

The PLL estimates the IF based on (23), as follows. Assum-
ing vα(t) and vβ (t) at the bus of interest are known (or
measured) and according to the expression of phase angle of
an analytic signal given in (26), one has:

vβ (t)
vα(t)

=
sin(φ(t))
cos(φ(t))

, (62)

or, equivalently:

vβ (t) cos(φ(t))− vα(t) sin(φ(t)) = 0. (63)

The PLL does not calculate φ(t) from (63) but estimates it,
say ϕ(t), and then tracks the error:

ε(t) = vβ (t) cos(ϕ(t))− vα(t) sin(ϕ(t)). (64)

Among the many implementations of PLLs, the one utilized
in this case study is the synchronous reference frame model,
which is shown in Fig. 10. The input to the integrator, ϕ′(t),
is the sought estimation of the IF [40]. In the simulations, the
proportional and integral gains of the PI control of the PLL
are set to 10 and 30, respectively.

To carry out the comparison, we consider the fully-fledged
EMT model of the IEEE 39-bus system provided by
DIgSILENT PowerFactory. The system model is based on
the original IEEE 39-bus benchmark network and is modified
to capture the behavior during electromagnetic transients of
the power network, namely, the frequency dependency of
transmission lines and the non-linear saturation of transform-
ers. For reference this model is available as an application
example with DIgSILENT PowerFactory.

A three-phase fault is simulated at terminal bus 4 of the
system at 0.2 s and cleared at 0.3 s. The integration time step

FIGURE 11. IEEE 39-bus system, balanced scenario: voltage at
bus 26 following the fault at bus 4.

considered is 0.01 ms. We consider the voltages at bus 26 fol-
lowing the contingency. Figure 11 shows the trajectories in
time of three-phase voltages.

Figure 12 shows vabc(t), ωκ (t) and ϕ′(t) as obtained for
four scenarios, as follows.
• Base-case balanced system. This is the benchmark sys-
tem provided with DIgSILENT PowerFactory.

• Unbalanced system. The power consumption of all
19 loads of the system is unbalanced, with imbalances
ranging from 5 to 10% on one of the phases.

• Unbalanced harmonic current source. Unbalanced 5-th
and 7-th harmonic current sources are added to bus 26.

• Balanced system with noise. A Gaussian noise is added
to the measurement voltage input of all excitation sys-
tems of the synchronous machines.

Before the fault, the three phases are balanced and thus,
the corresponding part of the curve is circular and lies in
a plane. The same holds after the fault clearance but the
voltage converges to a circle that is different from that of
the initial steady-state. During the fault, the voltages are
not perfectly balanced and symmetrical, which gives rise to
the non-circular and non-planar sections observed in the left
column of Fig. 12.
Regarding the estimation of the azimuthal frequency,

we have adopted a simple numerical procedure. First we
have estimated the time derivatives using a numerical central
derivative, i.e., the derivative of the voltage sample vi at time
ti is approximated with:

v′i ≈
vi+1 − vi−1

2h
,

where h is the time interval of the somapling rate and vi+1 and
vi−1 are the voltage samples at ti + h and ti − h, respectively.
Then we have calculated the azimuthal frequency using equa-
tion (48) and finally used a properly tuned lead-lag filter
to remove high frequency noise. The best results have been
obtained using h = 0.1 ms. For bigger h the estimation
becomes inaccurate and for smaller h the effect of noise
becomes dominant. In turn, the estimation of the azimuthal
(and, similarly, of the torsional frequency) presents same
challenges and same tradeoffs as the estimation of the instan-
taneous frequency through PLLs. Overall, and as expected,
there is a very good match between ωκ (t) and ϕ′(t), also
for the scenarios with unbalanced voltages and harmonic
contents.
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FIGURE 12. IEEE 39-bus system. (a) and (b) Base-case balanced
system; (c) and (d) unbalanced system; (e) and (f) unbalanced
harmonic current sources; and (g) and (h) balanced system with
Gaussian noise. (a), (c), (e), and (g) Voltage at bus 26 in the
space (va, vb, vc); and (b), (d), (f), and (h) estimated frequency.

V. CONCLUSION
The paper elaborates on the concept of frequency and dis-
cusses a geometric approach that allows defining a common
framework for time- and frequency-domain approaches.With
this framework the well-known paradoxes of the IF can be
explained in terms of curves and of coordinate transforma-
tions. A variety of examples illustrate the proposed frame-
work as well as the conditions for which the IF matches the
expected shape and behavior of the frequency of a signal.
A case study based on the IEEE 39-bus system shows that
PLLs closely match the proposed geometric approach.

The geometrical approach appears promising and paves the
way to a variety of future developments. Reference [30] is
our first work that utilizes the geometrical framework and
focuses on circuit analysis. We believe that this framework
can be also exploited for practical applications, i.e., to design
better controller and improve the dynamic performance of
power systems, in particular the control of non-synchronous
devices in low-inertia networks. We are currently working in
this direction.
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