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Abstract: In this paper we focus on a class of non-causal systems of differential equa-

tions, namely systems the variables of which can depend not only from the current or

past time, but also from future time. For this type of systems, we study their solutions

and present new and easily testable conditions under which any state of the system is

stable. The stability analysis of a future-state-dependent set of differential equations has

its relevance also in practical applications. Numerical examples, as well as an application

in electric power engineering, are provided to justify our theory.
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1 Introduction

A system is causal if its behavior is dependent upon information from the
past and the present, but not from the future. The dynamic response and
stability of causal systems is studied using well-established mathematical
tools from the theory of functional differential equations, e.g. see [10]. The
requirement of causality in the definition of dynamical systems [1, 19], neu-
tral dynamical systems [6, 15], and for example their applications in Elec-
trical Power Systems [12, 14, 16, 20] & Macroeconomics [7], has been a
long-standing system property .

This paper focuses on the study of a class of systems that violate the
system property of causality, i.e. systems whose behavior is impacted by
some future or time-advanced information. Such systems, referred as non-
causal or anticipatory [18], are difficult, if not impossible, to realize for
real-time operation [5], and thus their identification, estimation, and control
are challenging problems to address. Note here that the presence of time-
advanced information in a system does not necessarily imply the violation
of causality, e.g. see the discussions on negative group delays and causality
in electronic circuits, in [11, 17].
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Non-causality is relevant in a number of existing applications. A couple
of examples are the output tracking control of non-minimum phase systems
[8], and non-causal filtering [2, 9, 21]. The latter, although not evidently
realizable for real-time processing, is widely employed in signal processing,
in particular for offline analysis of historical time-series.

The scientific community that studies the modelling and numerical inte-
gration of physical systems, often defines a non-causal system as a system
the equations of which are written in such a way that there is no cause-
effect among variables as opposed to, for example, control systems, where
one has inputs and outputs. Note though that this definition of causality is
not what we discuss in this article. For the sake of completeness, we men-
tion that an interesting discussion on causality for the implementation of
physical systems with the meaning above can be found in [3].

In many control applications it is relevant to utilize the time derivative
of controlled quantities as is, for example, the case of Proportional Integral
Derivative (PID) controllers. Since, the time derivative of a signal provides
an indication on the trend in the signal, it can be utilized to estimate the
future value of the controlled signal itself. A relevant application is the
compensation of delayed quantities, see for example [4, 13, 22]. In fact, an
ideal compensation would be able to estimate exactly the value of the signal
in the future. In such application, the study of the stability of future-state-
dependent set of differential equations can provide the limit of the stability
of controls that are based on compensation.

The remainder of the article is organized as follows. Section 2 describes
the formulation of the non-causal system under study and provides prelim-
inary results on its solution. The main results of the paper are presented in
Section 3. Numerical examples are discussed in Section 4. Finally, conclu-
sions are drawn in Section 5.

2 Preliminaries

2.1 System Formulation

We consider a dynamical system the evolution of which depends on the value
of a time-advanced state, tadv ∈ [0,∞), i.e. the following set of explicit non-
causal differential equations:

y′(t) = f
(
y(t),y(t+ tadv)

)
, (1)

where t ∈ [0,∞); y(t) ∈ Cm is the column vector of state variables, with
y′(t) we denote the first order derivative of y(t), and f : R2m → Rm is a set
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of non-linear functions. Equivalently if we set y = y(t), yµ = y(t + tadv),
then (1) can be written as:

y′ = f
(
y,yµ

)
.

Let y0 be a steady state solution of (1). Then, considering sufficiently small
disturbances, and for the purpose of analysis, (1) can be linearized at y0, as
follows:

y′ = f(y0,y0) + fy(y0,y0)(y − y0) + fyµ
(y0,y0)(yµ − y0).

If we set fy(y0,y0) = fy, fyµ
(y0,y0) = fyµ

, ∆y = y−y0, ∆yµ = yµ−y0,
we get:

∆y′ = fy∆y + fyµ
∆yµ,

or, equivalently,

∆y′(t) =fy∆y(t) + fyµ
∆y(t+ tadv) , (2)

where fy, fyµ
∈ Cm×m, are the Jacobian matrices that correspond to the

present-time and time-advanced variables, respectively. Adopting the nota-
tion y = ∆y, P = −fy, Q = −fyµ

, system (2) can be rewritten in the
following form:

y′(t) + Py(t) + Qy(t+ tadv) = 0m,1 , (3)

where P,Q ∈ Cm×m, y : [0,+∞) → Cm, and t, tadv ≥ 0; and 0m,1 denotes
the zero matrix of dimensions m× 1.

In this paper we provide new results on the solution and stability of (3).

2.2 Preliminary Results

In this subsection we present some preliminary results on system (3).

Lemma 2.1. System (3) can be written in the form:

y′(t) + [P + Q]y(t) = g
(
y, t
)
, (4)

where g(y, t) = Q
∫ t+tadv
t [Py(u) + Qy(u+ tadv)]du.
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Proof. System (3) can be written as:

y′(t) + Py(t) + Qy(t)−Qy(t) + Qy(t+ tadv) = 0m,1 ,

or, equivalently,

y′(t) + [P + Q]y(t) = −Q[y(t+ tadv)− y(t)] , (5)

where

−Q[y(t+ tadv)− y(t)] = −Q

∫ t+tadv

t
[y′(u)]du,

and, equivalently,

−Q[y(t+ tadv)− y(t)] = Q

∫ t+tadv

t
[Py(u) + Qy(u+ tadv)]du .

Consequently, (5) becomes:

y′(t) + [P + Q]y(t) = Q

∫ t+tadv

t
[Py(u) + Qy(u+ tadv)]du ,

whereby setting g(y, t) = Q
∫ t+tadv
t [Py(u) + Qy(u + tadv)]du, we arrive at

(4). The proof is completed.

Next we provide a solution to system (3) by using the system formulation
in Lemma 2.1.

Proposition 2.1. An implicit solution of (3) is given by

y(t) = e−[P+Q]ty(0) +

∫ t

0
e−[P+Q](t−h)g(y, h)dh , (6)

where g(y, h) = Q
∫ h+tadv
h [Py(u) + Qy(u+ tadv)]du.

Proof. From Lemma 2.1, system (3) can be written as:

y′(t) + [P + Q]y(t) = g
(
y, t
)
,

with solution in the form:

y(t) = yh(t) + yp(t) , (7)

where yh(t) is the solution of the system

y′(t) + [P + Q]y(t) = 0m,1,
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and yp(t) is a partial solution. Hence:

yh(t) = e−[P+Q]ty(0) , (8)

and consequently
yp(t) = e−[P+Q]tk(t) , (9)

with k(t) being unknown. Substitution of yp(t) in (4) yields:

y′p(t) + [P + Q]yp(t) = g
(
y, t
)
,

or, equivalently,
e−[P+Q]tk′(t) = g

(
y, t
)
,

or, equivalently,
k′(t) = e[P+Q]tg

(
y, t
)
,

or, equivalently,

k(t) =

∫ t

0
e[P+Q]hg

(
y, h

)
dh . (10)

Substitution of (10) in (9) yields:

yp(t) = e−[P+Q]t

∫ t

0
e[P+Q]hg

(
y, h

)
dh ,

or, equivalently,

yp(t) =

∫ t

0
e[P+Q](h−t)g

(
y, h

)
dh . (11)

By using (11) and (8) in (5), we arrive at (6). The proof is completed.

We close this section with the following two definitions that will be used
in the next section.

Definition 2.1. A continuous column of functions y on [0,+∞) is bounded
if ∀ε > 0, ∃δ > 0 such that ‖y‖ < ε

2 , ∀t ≥ δ.

Definition 2.2. Let ‖ · ‖ be an induced norm, and y a bounded continuous
column of functions in [0,+∞). Then an operator T is called a contraction
operator on y if there exists q ∈ [0, 1) such that:

‖T y− T w‖ ≤ q‖y−w‖ ,

for all y, w bounded continuous columns of functions on [0,+∞). Where
‖y−w‖ = supt≥0‖y(t)−w(t)‖.
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3 Stability Results

This section presents the main results of the paper on system (3). We first
provide the following definition:

Definition 3.1. We define the operator T on the set of the bounded con-
tinuous columns of functions y on [0,+∞) as:

T y(t) = e−[P+Q]ty(0) +

∫ t

0
e−[P+Q](t−h)g(y, h)dh ,

where g(y, h) = Q
∫ h+tadv
h [Py(u) + Qy(u+ tadv)]du.

The following theorem provides sufficient conditions for the stability of (3):

Theorem 3.1. Any steady state of system (3) is stable if the following
conditions hold:

1. The matrix P + Q has all its eigenvalues with positive real parts.

2. The following inequality holds:

tadv‖Q‖
‖P‖+ ‖Q‖
‖P + Q‖

< 1 .

Proof. We recall the operator T as defined in Definition 3.1 and we will
prove conditions under which T y(t)→ 0m,1. We have:

‖T y(t)‖ =

∥∥∥∥e−[P+Q]ty(0) +

∫ t

0
e−[P+Q](t−h)g(y, h)dh

∥∥∥∥ ,
and

‖T y(t)‖ ≤ ‖e−[P+Q]t‖‖y(0)‖+

∥∥∥∥∫ t

0
e−[P+Q](t−h)g(y, h)dh

∥∥∥∥ .
Note that e−[P+Q]t → 0m,m if P+Q � 0, or equivalently, if the matrix P+Q
has all its eigenvalues with positive real parts. This is the first assumption
required and given by the theorem. We have for the second term in the
above inequality: ∥∥∥∥∫ t

0
e−[P+Q](t−h)g(y, h)dh

∥∥∥∥ ≤
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∫ t

0
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh ,

or, equivalently, ∥∥∥∥∫ t

0
e−[P+Q](t−h)g(y, h)dh

∥∥∥∥ ≤∫ δ

0
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh+∫ t

δ
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh .

Under the assumption P + Q > 0, we have:∫ δ

0
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh <

ε

2
.

In addition, by using the Definition 2.1:∫ t

δ
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh ≤

ε

2
tadv‖Q‖

‖P‖+ ‖Q‖
‖P + Q‖

,

whereby using the second assumption given by the theorem, we get:∫ t

δ
e−‖P+Q‖(t−h)‖Q‖

(∫ h+tadv

h
[‖P‖‖y(u)‖+ ‖Q‖‖y(u+ tadv)‖]du

)
dh ≤ ε

2
.

Hence we have that ‖T y(t)‖ < ε
2 + ε

2 = ε, and consequently T y(t)→ 0m,1.
Next we will prove that there exists q ∈ [0, 1) such that:

‖T y− T w‖ ≤ q‖y−w‖ ,

for all y and w bounded continuous columns of functions on [0,+∞). We
have:

‖T y− T w‖ =

∥∥∥∥∫ t

0
e−[P+Q](t−h)(g(y, h)− g(w, h)

)
dh

∥∥∥∥ ≤∥∥∥∥∫ t

0
e−‖[P+Q]‖(t−h)‖

(
g
(
y, h

)
− g(w, h)

)
‖dh

∥∥∥∥ .
Where

‖
(
g(y, h)− g(w, h)

)
‖ =
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∥∥∥∥Q∫ h+tadv

h
[P(y(u)−w(u)) + Q(y(u+ tadv)−w(u+ tadv))]du

∥∥∥∥ ≤
‖Q‖

∫ h+tadv

h
[‖P‖‖y(u)−w(u)‖+ ‖Q‖‖y(u+ tadv)−w(u+ tadv)‖]du ≤

‖Q‖
∫ h+tadv

h
[‖P‖+ ‖Q‖]du‖y−w‖ = tadv‖Q‖[‖P‖+ ‖Q‖]‖y−w‖ ,

or, equivalently,

‖
(
g(y, h)− g(w, h)

)
‖ ≤ tadv‖Q‖[‖P‖+ ‖Q‖]‖y−w‖ .

Hence:

‖T y− T w‖ ≤ tadv‖Q‖
‖P‖+ ‖Q‖
‖P + Q‖

‖y−w‖ ,

whereby setting q = tadv‖Q‖‖P‖+‖Q‖‖P+Q‖ and using the second assumption of the
theorem, we arrive at the desired result. Hence, T is a contraction operator
on y since there exists q ∈ [0, 1). In addition we proved that under the two
assumptions of the theorem we have T y(t)→ 0m,1. Thus, from contraction
mapping principle we have that y(t)→ 0m,1. The proof is completed.

Discussion on s-Domain Analysis

We apply the Laplace transform L into (3) and we get:

sY(s)− y(0) + PY(s) + Q

∫ +∞

0
y(t+ tadv)e

−stdt = 0m,1 ,

where Y(s), s ∈ C is the Laplace transform of y(t). Equivalently:

sY(s) + PY(s) + Q

∫ +∞

0
y(t+ tadv)e

−stdt = y(0) .

By setting t+ tadv = u, we get:

(sIm + P)Y(s) + Q

∫ +∞

tadv

y(u)e−s(u−tadv)du = y(0) ,

or, equivalently,

(sIm+P)Y(s)+Q

∫ +∞

0
y(t)e−s(t−tadv)dt−Q

∫ tadv

0
y(t)e−s(t−tadv)dt = y(0) ,
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or, equivalently,

(sIm+P)Y(s)+estadvQ

∫ +∞

0
y(t)e−stdt−estadvQ

∫ tadv

0
y(t)e−stdt = y(0) ,

or, equivalently,

(sIm + P + estadvQ)Y(s) = y(0) + estadvQ

∫ tadv

0
y(t)e−stdt . (12)

Note that one may be tempted to study the system via a system of neutral
delayed differential equations, i.e. by setting t + tadv = u in (3). However,
this is rather an alternative way to arrive to (12), as we show below:

y′(u− tadv) + Py(u− tadv) + Qy(u) = 0m,1 , u ≥ tadv ,

i.e. a system of neutral delay differential equations. If we apply the Laplace
transform L into this expression, we get:∫ +∞

tadv

y′(u−tadv)e−sudu+P

∫ +∞

tadv

y(u−tadv)e−sudu+Q

∫ +∞

tadv

y(u)e−sudu = 0m,1

whereby setting u− tadv = t we get:∫ +∞

0
y′(t)e−stdt+ P

∫ +∞

0
y(t)e−stdt+ Q

∫ +∞

0
y(t+ tadv)e

−stdt = 0m,1 ,

which with similar steps as previously leads to (12).
Studying the stability per se of system (3) through (12) requires first to

deal with the quantity
∫ tadv
0 y(t)e−stdt. With this regard, one may study

relevant special cases, which implies that additional initial conditions are
imposed to the original system. Depending on the special case examined,
the time-advance tadv has a different impact on the system. As a matter of
fact, for the special case y(t) = y(t+ktadv), k = 0, 1, 2, ..., ∀t ∈ [0, tadv], tadv
does not have any effect on the stability per se of the system, as we show in
Proposition 3.1 and Remark 3.1.

Proposition 3.1. We consider system (3). Then, if y(t) = y(t + ktadv),
k = 0, 1, 2, ..., ∀t ∈ [0, tadv]:

Y(s) =
1

1− e−stadv

∫ tadv

0
y(t)e−stdt.
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Proof. We have that

Y(s) =

∫ +∞

0
y(t)e−stdt =

∫ tadv

0
y(t)e−stdt+

∫ 2tadv

tadv

y(t)e−stdt+

∫ 3tadv

2tadv

y(t)e−stdt+...

or, equivalently,

Y(s) =

+∞∑
k=0

∫ (k+1)tadv

ktadv

y(t)e−stdt,

whereby setting t = u+ ktadv we have

Y(s) =

+∞∑
k=0

∫ tadv

0
y(u+ ktadv)e

−s(u+ktadv)du,

or, equivalently, by using the assumption of the proposition

Y(s) =

+∞∑
k=0

∫ tadv

0
y(u)e−s(u+ktadv)du,

or, equivalently,

Y(s) =
+∞∑
k=0

∫ tadv

0
y(t)e−s(t+ktadv)dt,

or, equivalently,

Y(s) =
+∞∑
k=0

e−sktadv
∫ tadv

0
y(t)e−stdt,

or, equivalently,

Y(s) =

∫ tadv

0
y(t)e−stdt

+∞∑
k=0

( 1

estadv

)k
.

and from here by using
∑+∞

k=0

(
1

estadv

)k
= 1

1−e−stadv we arrive at the result.
The proof is completed.
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Remark 3.1. By using Proposition 3.1, we can rewrite (12) as follows:

(sIm + P + estadvQ)Y(s) = y(0) + estadvQ(1− e−stadv)Y(s) ,

or, equivalently,

(sIm + P + estadvQ)Y(s) = y(0) + (estadv − 1)QY(s) .

or, equivalently,
(sIm + P + Q)Y(s) = y(0) .

4 Numerical Examples

In this section we provide two numerical examples. These examples are
employed to illustrate our theoretical results, in particular the application
of Theorem 3.1, under the effect of which the stability of any steady state
of a system in the form of (3) is guaranteed.

4.1 Example 1

Consider the following non-causal system:

y′(t) + Py(t) + Qy(t+ tadv) = 0m,1 , (13)

where the coefficient matrix of the variables affected by the time advance
tadv is

Q =


0 1.135 0 0 0
0 0 0 0 0
0 0 0 −2.415 0
0 0 0 0 0
0 0 0 0 1.25

 ,
while the coefficient matrix of the variables affected by the present time is

P =


1.62 0 −0.38 −0.885 0.885

0 2.125 0 −0.375 0.375
−1.52 5.165 0.48 0 2.415

0 −0.375 0 3.125 −0.125
0 0.75 0 1.75 0

 .
For stability, the first condition of Theorem 3.1 requires that all eigenvalues
of the matrix P+Q are positive. Indeed, P+Q has 5 eigenvalues, λ1 = 0.1,
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λ2 = 1, λ3 = 2, λ4 = 2.5, λ5 = 3, all positive, and thus the first condition is
satisfied. Moreover, the second condition of Theorem 3.1 requires that:

tadv‖Q‖
‖P‖+ ‖Q‖
‖P + Q‖

< 1 .

In our case, we have that ||P|| = 7.598, ||Q|| = 2.947 and ||P + Q|| = 8.149.
Where || · || denotes the Frobenius norm. Therefore, we find that

‖Q‖‖P‖+ ‖Q‖
‖P + Q‖

= 2.739 ,

and hence, we find that the system is guaranteed to be stable for

tadv < 0.365 s .

4.2 Example 2

In this example we consider system (13) with the following coefficient ma-
trices:

P =



2 −0.75− 1.875j 0 1.25j 3 + 6.25j 1.125 + 3.125j
0 3− 1.25j 1.25j −2.5j −2− 20.5j −0.75 + 25.75j
0 −3 + 11.25j 2− 1.25j −2 + 2.5j 14− 47.5j 4− 16.25j
0 −1.5− 3.75j −0.5− 1.25j 2 + 2.5j 6.5 + 5.5j 2.125 + 8j
0 0 0 0 2.5− 7j 0 + 3.5j
0 0 0 0 0 2.5 + 7j

 ,

Q =



0 0 −0.25− 0.625j 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

where j is the imaginary unit. In this case, only the third variable in the
first equation of the system is impacted by the time-advance. The first
condition of Theorem 3.1 is satisfied, since the real parts of all eigenvalues
of the matrix P+Q are positive. In particular, the matrix has 6 eigenvalues,
λ1 = 2, λ2 = 3+5j, λ3 = 3−5j, λ4 = 1, λ5 = 2.5+7j, λ5 = 2.5−7j. Then,
from the second condition of Theorem 3.1 we have that the system is stable
for all time-advance values tadv for which

tadv < tmadv =
‖P + Q‖

‖Q‖(‖P‖+ ‖Q‖)
= 1.471 s .
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We carry out a parametric analysis to show how changing the coefficient
of the time-advanced variable affects the maximum time-advance tmadv for
which the system is guaranteed to be stable, according to Theorem 3.1. To
this aim, we assume that the non-zero element of Q is replaced by a generic
complex number α+ βj, where α, β ∈ R. Then:

Q =



0 0 α+ βj 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Figure 1 shows how the maximum time-advance tmadv changes as α+βj is
varied. The projections of the obtained surface onto to the a-tmadv, b-t

m
adv, and

a-b planes, are also depicted in the same plot. Notice that, for smaller values
of α, β, the value of tmadv increases. This is as expected, with the limit case
being α = β = 0, for which the time-advance has no effect on the system,
and thus the system is always stable, or equivalently, tmadv → ∞ (which
can be also confirmed by substituting ||Q|| = 0 in the second condition of
Theorem 3.1).

α

−4 −2
0

2
4

β

−4
−2

0
2

4

tm a
d
v

0.25
0.50
0.75
1.00
1.25
1.50
1.75

Figure 1: α versus β versus tmadv, Example 2.
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4.3 Example 3

In this example we provide a simple application of our theory in electric
power engineering. In particular, we consider a synchronous electric ma-
chine connected through a line to a bus of constant frequency and voltage
(infinite bus). We also assume that the machine is equipped with an auto-
matic controller aimed at damping electromechanical oscillations. In power
engineering, such controller is known as power system stabilizer (PSS).

We assume that the machine’s behavior is described by the classical
model:

δ′(t) = ωb(ω(t)− 1) ,

Mω′(t) = Pm −
eq,1v

X
sin(δ(t)− θ)−D(ω(t)− 1) ,

(14)

where δ, ω are the machines’ rotor angle and speed; Pm is the machine’s
mechanical power output; M is the machine’s mechanical starting time and
D its damping coefficient; ωb is the nominal synchronous angular frequency
in rad/s; v, θ are the constant voltage magnitude and angle at the infinite
bus; eq,1 is the machine’s internal electromotive force, which is also assumed
constant; X represents the sum of the machine’s transient reactance and the
line reactance.

Linearizing (14) around an equilibrium [δo ωo]
T leads to:

∆δ′ = ωb∆ω , (15)

M∆ω′ = −eq,1vcos(δo − θ)
Xtot

∆δ −D∆ω , (16)

In its simplest form, a PSS tracks the machine’s speed and, following a
certain control law, it introduces artificial damping into (16), which leads
to:

M∆ω′ = −eq,1vcos(δo − θ)
Xtot

∆δ −D∆ω − u(∆ω) . (17)

For the purposes of this example, we assume that the PSS implements an
ideal predictive control structure which is able to track the machine’s rotor
speed at a future time t+tadv. The output of such predictive PSS is described
by the following time-advanced control law :

u = K∆ω(t+ tadv) , (18)

where K is the control gain. Combining (15), (17), and (18) in a matrix
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form, we get:[
∆δ
∆ω

]′
(t) =

[
0 ωb

− eq,1vcos(δo−θ)
MXtot

− D
M

] [
∆δ
∆ω

]
(t)−

[
0 0

0 K
M

] [
∆δ
∆ω

]
(t+ tadv) ,

(19)

which equivalently, can be written as system in the form of (3), with:

y =

[
∆δ
∆ω

]
, P = −

[
0 ωb

− eq,1vcos(δo−θ)
MXtot

− D
M

]
, Q =

[
0 0

0 K
M

]
Let us give a numerical example. Let eq,1 = 1.22 pu1, v = 1 pu, θ =

0 rad, Pm = 1 pu, X = 0.7 pu, M = 5 MWs/MVA, ωb = 100π rad/s (50 Hz
system).

The equilibrium of (14) is:[
δo
ωo

]
=

arcsin

(
PmX

veq, 1

)
1

 =

[
0.61

1

]
and matrix P becomes:

P =

[
0 −314.16

0.29 0.4

]
,

We check the conditions of Theorem 3.1 for control gain K = 10. In this
case, matrix Q is

Q =

[
0 0
0 2

]
.

The eigenvalues of P + Q are 1.2 ± 9.4j, with the real part being positive.
We also have that

‖Q‖‖P‖+ ‖Q‖
‖P + Q‖

= 2 ,

and hence, when K = 10, from Theorem 3.1 the system is guaranteed to be
stable for

tadv < 0.5 s .

We finally consider that the PSS gain K is an adjustable parameter and
draw in Fig. 2 the variation of tmadv as K changes. We note first that, for
K ≥ 2 the first condition of Theorem 3.1 is violated and second, that, as
expected, when K → 0, tmadv →∞.

1per unit system (pu); in power engineering, quantities are often expressed as fractions
of defined base units.
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Figure 2: tmadv versus control gain K, Example 3.

5 Conclusions

In this article we defined a class of non-causal systems of differential equa-
tions and proved easily testable conditions under which any state of the
system is stable. These results were justified with two numerical examples.
As a future direction we aim to further extend these theoretical results and
examine promising relevant applications, including the study and better un-
derstanding of predictive models and control systems. For all this there is
already some research in progress.
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