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Abstract This paper focuses on multirate time-domain simulations of power system models. It proposes a

matrix pencil-based approach to evaluate the spurious numerical deformation introduced into power system dy-

namics by a given multirate integration scheme. Moreover, it considers the problem of multirate partitioning

and discusses a strategy for allocating state and algebraic variables to fast and slow subsystems based on modal

participation factors (PFs). The suitability and features of the proposed approach are illustrated through numer-

ical simulations that assess the accuracy effects of interfacing, as well as various prediction and solution methods.
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1 Introduction

1.1 Motivation

Power system dynamics are complex and span multiple timescales. This is reflected in the system model,

where various components have different time constants, with some exhibiting faster and others slower

responses, resulting in a set of stiff nonlinear differential algebraic equations (DAEs). Efficient and

accurate time-domain simulation (TDS) of such a model is a challenging task. This paper focuses on the

accuracy and numerical stability analysis of multirate methods, a family of numerical techniques that

has been discussed in the literature as a means of enhancing power system TDS [1–4].

1.2 Literature Review

Multirate methods divide system variables across different timescales, simulating each with a corre-

sponding time step size. The idea is to improve efficiency by using larger step sizes for slowly varying

components, and smaller ones to accurately capture fast-changing dynamics [5–7]. Effective implemen-

tation requires addressing two key aspects [1,2,8]: partitioning system variables into different timescales;

and selecting a numerical scheme to solve the equations and handle the interfacing between partitions.

Multirate partitioning can be performed once, prior to the simulation (statically) [1, 4]; or adap-

tively updated during the simulation (dynamically) based on the activity of variables and metrics such

as local truncation errors (LTEs) [3, 9]. Dynamic partitioning promises greater accuracy, but is also

more complex to implement, while its need for continuous monitoring and frequent updates of partition
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boundaries increases computational cost [10]. Moreover, an important consideration for both static and

dynamic partitioning is how to define the timescales of algebraic variables, as these inherently represent

infinitely fast or infinitely slow dynamics. In general, there is a lack of systematic strategies to address

this issue and existing approaches are heuristic. For instance, we cite [3] wherein algebraic variables are

partitioned based on the rates at which algebraic equations converge during Newton’s iterations. More-

over, a technique to study the link of fast/slow system dynamics with algebraic variables through the

definition of appropriate mode-in-output PFs is presented in [11]; however, its application to multirate

DAE partitioning remains unexplored. Finally, apart from the problem of multirate integration within

a single simulation framework, partitioning is also crucial in multirate co-simulation, where different

subsystems – such as electromagnetic transient and electromechanical models – are coupled, often across

different software. In such cases, partitioning is typically performed empirically based on the natural

decomposition of power system components [12–14].

Once partitioned, the power system model is numerically solved using a multirate integration scheme,

where fast dynamics depend on the accurate prediction and interpolation of slow variables to maintain

consistent coupling and synchronization [15]. Interfacing between fast and slow components is a par-

ticularly challenging issue: inaccurate interpolation can degrade accuracy, while the use of an explicit

predictor may require smaller time steps to avoid numerical instabilities. On the other hand, implicit

predictors have better stability properties but require matrix factorizations. These challenges can ulti-

mately compromise efficiency, thus undermining the initial appeal of using a multirate method. Notably,

a systematic approach to assess the accuracy and numerical stability of multirate schemes is currently

missing. In this vein, recent works propose a small-signal stability analysis (SSSA) framework to evaluate

the stability and accuracy of integration methods, see [16–19], but this has not yet been formulated for

or applied to multirate methods.

1.3 Contribution

The contribution of the paper is twofold, as follows.

• Amatrix pencil-based approach to evaluate in a unified manner the numerical stability and accuracy

of multirate TDS schemes.

• A discussion on how to partition the algebraic variables of power system DAEs for multirate

simulation based on mode-in-output PFs.

1.4 Paper Organization

The remainder of the paper is organized as follows. Section 2 provides preliminaries on power system

multirate simulation and discusses how the variables can be partitioned into different timescales using
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PFs. The proposed approach to study the numerical stability and accuracy of multirate methods is

presented in Section 3. The case study is discussed in Section 4. Conclusions are drawn in Section 5.

2 Power System Multirate Simulation

2.1 DAE System Model

The short-term stability of a power system is conventionally studied through a DAE model, as follows [20]:

x′ = f(x,y)

0m,1 = g(x,y)

(1)

where x = x(t) ∈ Rn and y = y(t) ∈ Rm are the state and algebraic variables of the system, respectively;

f : Rn+m 7→ Rn and g : Rn+m 7→ Rm; 0m,1 denotes the zero matrix of dimensions m× 1.

A multirate simulation consists in numerically solving (1) by using different time step sizes for vari-

ables evolving in different timescales. Considering the most common case where the system is partitioned

in two timescales, i.e., fast and slow, (1) can be rewritten as:

x′
f = f f(xf ,xs,yf ,ys) (2)

0mf ,1 = gf(xf ,xs,yf ,ys) (3)

x′
s = f s(xf ,xs,yf ,ys) (4)

0ms,1 = gs(xf ,xs,yf ,ys) (5)

where xf ∈ Rnf and yf ∈ Rmf are the state and algebraic variables of the fast partition; xs ∈ Rns and

ys ∈ Rms are the state and algebraic variables of the slow partition; it is nf + ns = n and mf +ms = m.

2.2 Multirate Numerical Integration

In this section, we describe a generic multirate integration scheme employed for the solution of (2)-(5).

Given the model in (2)-(5), we start from t = t0, and fast and slow variables are updated with time steps

hf and hs, respectively, where hs > hf . The steps of the multirate scheme, a high-level representation of

which is given in Fig. 1, are as follows.

1. Predict the values of x and y at time t+ hs:

xP
t+hs

= ϕ
(
xt,yt,xt+hf

,yt+hf
, . . .

)
0m,1 = hs g

(
xP
t+hs

,yP
t+hs

) (6)

where P denotes predicted values; and ϕ ∈ Rn is defined by the predictor method adopted.
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Figure 1: Representation of multirate TDS.

2. Use the predicted values to interpolate the slow variables at intermediate steps t+ ihf , i = 1, . . . , r.

For a generic interpolation method:

xs,t+ihf
= ıs(x

P
s,t+hs

,xs,t, r)

ys,t+ihf
= ıs(y

P
s,t+hs

,ys,t, r)

(7)

where ıs ∈ Rns ; and r = hs/hf ∈N.

3. Integrate the fast equations (2)-(3) with time step hf to calculate the fast variables xf,t+ihf
, yf,t+ihf

at intermediate steps t+ ihf , i = 1, . . . , r.

4. Integrate the slow equations (4)-(5) at t + hs with time step hs, using the fast variables xf,t+rhf
,

yf,t+rhf
as inputs.

5. Compare the calculated values of the variables during the integration process with the predicted

values. If
∣∣∣∣xP

s,t+hs
− xs,t+hs

∣∣∣∣
∞ >ε or

∣∣∣∣yP
s,t+hs

− ys,t+hs

∣∣∣∣
∞ >ε, then update the predicted values,

i.e., xP
s,t+hs

= xs,t+hs and yP
s,t+hs

= ys,t+hs
, and return to step 2). Otherwise, set t = t0 + hs and

return to step 1).

In this paper, we consider that the predictor in step 1) may be either explicit or implicit. For steps

3) and 4) we assume that the integration method employed is implicit. As a consequence, the update of

variables requires employing an iterative method. For instance, the j-th iteration of Newton’s method

employed for the update of fast variables in step 3) is:

Jf

∆x
(j)
f,t+ihf

∆y
(j)
f,t+ihf

 = −

F (j)
f

G
(j)
f

 (8)

where Jf : R(nf+mf )×(nf+mf ) is the Jacobian matrix for the fast subsystem, F f : Rnf and Gf : Rmf

are defined by the implicit integration method adopted. To speed up the solution, a dishonest New-

ton (DHN) method can be used, wherein Jf is factorized only once per time step. Using DHN in the

process above, a summary of the Jacobian factorizations required per time increment hs for different

integration schemes is given in Table 1. We note that a complete assessment of computational efficiency
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should be based on performance indicators (e.g., wall-clock time). Moreover, meaningful comparisons

between different multirate setups require adjusting the time step sizes for each configuration to achieve

comparable numerical accuracy. The matrix-pencil-based approach presented in Section 3 can be used

to select such step sizes.

Table 1: Number of Jacobian factorizations every hs using DHN: Single-rate, multirate with explicit predictor,
and multirate with implicit predictor.

Matrix order

Multirate n+m ms nf+mf ns+ms

No, step hf r 0 0 0

Yes, explicit predictor 0 1 r 1

Yes, implicit predictor 1 0 r 1

2.3 PF-Based Partitioning

This section focuses on how to define (2)-(5) given (1), i.e., on the partitioning of system variables into

fast and slow subsets. As discussed in Section 1, algebraic variables do not define any dynamics of finite

speed and are thus more challenging to partition than states.

To address this issue, [3] proposes to evaluate the speed of algebraic variables dynamically, based

on the number of Newton iterations required for their equations to converge during the simulation.

Variables that converge in a small number of iterations are classified as fast, whereas those requiring

more iterations are considered slow. Although this approach may be accurate in some cases, it also has

significant limitations. For example, consider an infinitely slow algebraic variable y defined through the

equation 0 = y − yo, where yo is a constant.1 The equation converges trivially in a single iteration and

y is thus misclassified as fast by the above approach, despite being infinitely slow.

In this paper, we avoid characterizing the speeds of variables – which is a property of the model

– through purely numerical indicators. Instead, we adopt a principled partitioning strategy, based on

matrix pencil-based SSSA and PFs. Linearization of (1) at an equilibrium (xo,yo) := [x⊺
o y⊺

o ]
⊺ gives:

x̃′ = fxx̃+ fyỹ

0m,1 = gxx̃+ gyỹ

(9)

where x̃ = x − x0, ỹ = y − y0; and fx, fy, gx, gy are Jacobian matrices at (x0,y0) (where ⊺ is the

matrix transpose). System (9) can be rewritten as:

E x′ = A x (10)

1y is infinitely slow as y′ = 0, or, Ty′ = g(y) with T → ∞. Relevant examples in a power system model include,
e.g. auxiliary control variables that define fixed setpoints.
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where x = (x̃, ỹ); In is the n× n identity matrix; and:

E =

 In 0n,m

0m,n 0m

 , A =

fx fy

gx gy

 (11)

where 0m is the zero matrix of dimensions m×m. The algebraic variables can be eliminated under the

assumption that the Jacobian matrix gy is invertible. This assumption comes with no loss of generality,

as potential singularities can be always resolved by reformulating the DAE system into a dynamically

equivalent form with a non-singular gy [21]. The elimination yields:

x̃′ = A x̃ (12)

where A = fx − fyg
−1
y gx. The eigenvalues of A are then found by solving the algebraic problem [22]:

(sIn −A)v = 0n,1

w (sIn −A) = 01,n

(13)

Every s ∈ C satisfying (13) is an eigenvalue of A, with v and w being the corresponding right

and left eigenvectors. Moreover, the right and left modal matrices (12) are V = [v1 · · · vn] and W =

[w⊺
1 · · · w⊺

n]
⊺. Provided that the eigenvalues of A have equal algebraic and geometric multiplicities, the

evolution of the k-th element of x̃ is:

x̃k(t) =

n∑
i=1

esitwix̃(0)vk,i (14)

where vk,i, wi,k are the k-th elements of vi, wi, respectively. Exciting in the k-th differential equation

the k-th state, e.g., by applying the initial conditions x̃k(0) = 1, and x̃h(0) = 0, h ̸= k, we get:

x̃k(t) =

n∑
i=1

wi,kvk,ie
sit =

n∑
i=1

p
[x]
ki e

sit (15)

where p
[x]
ki = wi,kvk,i is called mode-in-state PF and provides a measure of the contribution of the i-th

eigenvalue si to the k-th state variation x̃k. Then, the system’s state participation matrix Px ∈ Rn×n is

defined as:

Px = (p
[x]
ki )1≤(k,i)≤n = W ⊺ ◦ V (16)

where ◦ denotes the Hadamard product. Given Px, the participation matrix of algebraic variables

Py ∈ Rm×n is defined as [11]:

Py = −g−1
y gxPx (17)
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The derivation of (17) is provided in Appendix A. To ensure that PFs of different algebraic variables

are comparable, each row of Py is normalized by dividing with the Euclidean norm of its entries [23].

In this paper, state and algebraic variables are partitioned into fast and slow subsets by using the

participation matrices Px and Py. In particular, by comparing the absolute values of the elements in

each row of Px, we identify the eigenvalue that has the largest contribution to each state variable of

the system, and denote it as λx,k (k = 1, 2, . . . , n). Similarly, by comparing the absolute values of the

elements in each row of Py, we identify the eigenvalue that has the largest contribution to each algebraic

variable, and denote it as λy,j (j = 1, 2, . . . ,m). Then, based on the natural frequencies of λx,k and

λy,j , state and algebraic variables are partitioned with a timescale separation natural angular frequency

threshold δ. For example, an algebraic variable is considered fast if |λy,j | > δ; otherwise, it is slow.

3 Numerical Stability and Accuracy

3.1 Formulation

In this section, we present a matrix pencil-based approach to analyze the numerical stability and precision

of multirate integration methods. The main idea is that the spurious numerical deformation introduced

to the dynamics of (1) by a given multirate scheme can be quantified by studying a linear discrete-time

system of the following form:

Fr yt+hs
= Gr yt (18)

where Fr, Gr and yt are defined from the specific multirate scheme implemented. Specifically, (18)

represents the small-signal dynamics of (1) as approximated by the multirate scheme. The approximated

dynamics, in turn, depend on how the system is partitioned, i.e., on how (2)-(5) are defined; as well as

on the numerical scheme chosen for the solution of the system, i.e., on the specific implementation of

steps 1)-5) in Section 2.2. The stability of (18) can be seen through the properties of the z-domain matrix

pencil ẑFr −Gr, where ẑ ∈ C. In particular, (18) is asymptotically stable if for every eigenvalue ẑi of

ẑFr −Gr, it holds that |ẑi| < 1. An instability of (18) indicates numerical instability of the multirate

scheme. Moreover, the numerical deformation introduced to the dynamic modes of the power system

model by the multirate method can be seen by comparing the eigenvalues of ẑFr−Gr to those of sIn−A.

For a given eigenvalue si of sIn − A, the relative deformation is |ŝi − si|/|si| where ŝi = log(ẑi)/hf is

the corresponding numerically deformed eigenvalue, mapped to the s-domain to facilitate comparison.

3.2 Application to Illustrative Multirate Scheme

In this section, we illustrate the proposed matrix pencil-based numerical stability and accuracy analysis.

To this end, we consider an implementation of steps 1)-5) in Subsection 2.2 that presents similarities
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with the scheme adopted in [3]. In particular, we consider prediction in step 1) by the forward Euler

method (FEM), and solution of fast and slow variables in steps 3) and 4 by the trapezoidal method (TM).

The process at the time interval [t0, t+ hs] is described as follows.

In step 1), the values of all variables are predicted using FEM:

xP
t+hs

= xt + hsf(xt,yt)

0m,1 = hsg(x
P
t+hs

,yP
t+hs

)

(19)

In step 2), the values of the slow variables at intermediate steps t+ ihf are interpolated linearly:

xs,t+ihf
= i(xP

s,t+hs
− xs,t)/r + xs,t

ys,t+ihf
= i(yP

s,t+hs
− ys,t)/r + ys,t

(20)

In step 3), fast equations at t+ihf are solved with TM:

xf,t+ihf
=xf,t+(i−1)hf

+
hf

2
f f(xt+ihf

,yt+ihf
)

+
hf

2
f f(xt+(i−1)hf

,yt+(i−1)hf
) (21)

0mf ,1 =hfgf(xt+ihf
,yt+ihf

)

In step 4), slow equations at t+hs are solved with TM:

xs,t+hs = xs,t +
hs

2
f s(xt,yt) +

hs

2
f s(xt+hs ,yt+hs

)

0ms,1 = hsgs(xt+hs
,yt+hs

)

(22)

We proceed to apply the proposed analysis as described in Section 3.1. To this end, we linearize

(19)-(22) around the equilibrium (xo,yo), which is also a fixed point of (19)-(22) under the assumption

that (xt+τ ,yt+τ ) = (xo,yo) for τ ∈ [−hs, 0].

Linearization of (19) gives:

x̃P
t+hs

= x̃t + hs

(
fxx̃t + fyỹt

)
0m,1 = gxx̃

P
t+hs

+ gyỹ
P
t+hs

(23)

Linearization of (20) gives:

x̃s,t+hf
= (x̃P

s,t+hs
− x̃s,t)/r + x̃s,t

ỹs,t+hf
= (ỹP

s,t+hs
− ỹs,t)/r + ỹs,t

(24)
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Linearization of (21) gives:

x̃f,t+ihf
=x̃f,t+(i−1)hf

+
hf

2
(f f,xx̃t+ihf

+ f f,yỹt+ihf
)

+
hf

2
(f f,xx̃t+(i−1)hf

+f f,yỹt+(i−1)hf
) (25)

0mf ,1 = hf

(
gf,xx̃t+ihf

+ gf,yỹt+ihf

)
Finally, linearization of (22) gives:

x̃s,t+hs
= x̃s,t +

hs

2
(f s,xx̃t+hs

+ f s,yỹt+hs
)

+
hs

2
(f s,xx̃t + f s,yỹt) (26)

0ms,1 = hs

(
gs,xx̃t+hs

+ gs,yỹt+hs

)
We provide the following proposition.

Proposition 1 : The spectral properties of (23)-(26) can be seen by studying an equivalent discrete-

time system in the form of (18), where yt+hs
= (xt+rhf

, . . .xt+hf
), yt = (xt+(r−1)hf

, . . . ,xt), and Gr, Fr

are properly defined matrices.

The proof of Proposition 1 is provided in Appendix B and is written in a general way to accommodate a

broader class of predictor and corrector methods through a parameterized representation. Then, following

from this proof, the case study discussed in the next section compares the accuracy of multirate schemes

implemented using different predictor and fast/slow variables solution methods.

4 Case Study

This section presents simulation results based on the well-known WSCC 9-bus benchmark system

[24]. The system consists of 6 transmission lines and 3 medium voltage/high voltage transformers; 3

synchronous generators (SGs) equipped with automatic voltage regulators (AVRs), power system sta-

bilizers (PSSs), and turbine governors (TGs). In total, the system’s DAE model includes 33 state and

64 algebraic variables. Simulation results are obtained with Dome [25]. Eigenvalues are computed with

LAPACK [26].

We start by partitioning the system variables using the participation matrices Px and Py as discussed

in Section 2.3 and where we have set δ = 20. As a result, the states representing the AVR voltages,

along with the algebraic variables representing the SG field voltages, are allocated to the fast subsystem.

For the sake of comparison, we also consider the scenario where state variables are partitioned through

standard PF analysis, whereas all algebraic variables are classified as fast. Assuming the multirate

scheme described in Subsection 3.2 – i.e., prediction in step 1) is made with FEM and solution of
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Table 2: PF-based partitioning: relative numerical deformation of dominant mode.

hf [s] hs [s]
PF-based for

x and y
PF-based for x;

(y = yf)

0.001
0.005 0.42% 0.42%
0.01 0.42% 0.42%
0.05 0.42% 0.42%

0.002
0.1

0.84% 0.838%
0.004 1.68% 1.68%
0.005 2.10% 2.09%

(a) hs = 0.005 s, hf = 0.001 s. (b) hs = 0.01 s, hf = 0.002 s. (c) hs = 0.04 s, hf = 0.008 s.

Figure 2: Eigenvalue analysis of multirate schemes: FEM prediction vs. TM prediction.

fast/slow variables in steps 3) and 4) is achieved with TM – a first comparison of the two partitioning

strategies is provided in Table 2. In particular, the table employs the proposed matrix pencil-based

approach described in Subsection 3.1 to quantify the relative numerical deformation introduced to the

system’s dominant dynamic mode by the two partitioning strategies. The dominant mode refers to the

local electromechanical oscillation of the SG connected to bus 2. In the eigenvalue analysis, this mode

is represented by the complex pair −0.19561 ± j8.37291 and has damping ratio ζ = 2.79%. Table 2

suggests that a principled allocation of a subset of the algebraic variables to the slow timescale based

on their PFs achieves accuracy comparable to assuming that all algebraic variables are fast (y = yf),

thereby showing potential to improve simulation speed. All results in the remainder of this section are

produced by considering PF-based partitioning of both state and algebraic variables.

We proceed to compare the impact of altering the multirate scheme’s predictor method on the nu-

merical deformation introduced to the system dynamic modes. The results under different time steps

for prediction by FEM and TM are shown in Fig. 2. As expected, TM prediction outperforms FEM in

terms of accuracy. In fact, as the time steps hs and hf are increased, the accuracy of FEM significantly

deteriorates and eventually numerical instability is encountered. On the other hand, with TM prediction

numerical stability is maintained regardless of the selected time step sizes, although this naturally comes

at an additional computational cost due to the need for full Jacobian factorization in step 1).

In Fig. 3, we fix the ratio r = hs/hf to 10 and study the trajectory of the dominant mode’s numerical

deformation over the range hf = [0.0001, 0.005] s and hs = [0.001, 0.05] s. To this end, we consider

different implementations of steps 1), 3) and 4) in Section 3.2. In the figure, solving fast/slow variables
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(a) FEM prediction, TM solution. (b) Implicit prediction, TM solution. (c) Implicit prediction, BEM solution.

Figure 3: Multirate integration: Dominant mode deformation as hf increases from 10−4 to 0.005 s, r = 10. The
points at the end of each line correspond to hf = 0.005 s.

(a) FEM prediction, TM solution. (b) Implicit prediction, TM solution. (c) Implicit prediction, BEM solution.

Figure 4: Real part deformation of dominant mode as hf increases from 10−4 to 0.005 s, r = 10.

(a) FEM prediction, TM solution. (b) Implicit prediction, TM solution. (c) Implicit prediction, BEM solution.

Figure 5: Imaginary part deformation of dominant mode as hf increases from 10−4 to 0.005 s, r = 10.

with TM in steps 3) and 4) is referred to as “TM solution”. As shown in Fig. 3a, the critical value

of hf beyond which the integration scheme is guaranteed to be destabilized under FEM prediction is

0.005 s. Moreover, from Fig. 3b it can be observed that when all steps 1), 3) and 4) are implemented

using TM, the multirate scheme can exhibit slight underdamping. This underdamping can be mitigated

by using backward Euler method (BEM) for prediction. Yet, as expected, if all steps 1), 3) and 4) are

implemented with BEM, the multirate scheme can lead to significant numerical overdamping. This is

illustrated in Fig. 3c. For the same mode, the numerical deformation of the real and imaginary parts

of the corresponding eigenvalue are shown in Figs. 4 and 5, respectively. Figure 5 explicitly shows

the deformation in the imaginary part, capturing the spurious numerical shift in oscillation frequency.

Under TM solution, prediction with TM results in slightly greater imaginary part deformation than BEM.

Conversely, under BEM solution, prediction with BEM yields smaller deformation than TM. Overall,

the highest level of accuracy in the examined cases is achieved when a BEM predictor is combined with

TM solution of fast/slow variables.
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Figure 6: Dominant mode deformation with FEM and TM predictors under different time step ratios (hs = 0.05 s).
The numbers next to the points represent the ratio values.

Figure 7: ωr,1 after the load trip at bus 5 with TM solution. hs = 0.05 s, hf = 0.005 s.

We further assess the numerical deformation of the system’s dominant mode by examining the impact

of varying the ratio r = hs/hf . To this end, we keep hs constant and vary r by changing hf . Fast/slow

variables are solved with TM. The results are presented in Fig. 6, and indicate that, interestingly, smaller

values of hf do not necessarily imply better accuracy. For example, with FEM prediction, increasing r

from 5 to 6 leads to a larger numerical deformation. Although counterintuitive at a first glance, this

irregular behavior occurs as decreasing hf increases the number of intermediate steps that rely on linearly

interpolated values of the slow variables, which are not updated until t+ hs, thus amplifying interfacing

error.

In the following, we perform multirate non-linear time-domain simulations of the system’s non-linear

DAE model. In particular, we consider the response of the system after (i) a sudden trip of 50% of

the load connected to bus 5 occurring at t = 1 s and followed by reconnection at t = 1.2 s; and (ii) a

three-phase fault occurring at bus 5 at t = 1 s and cleared after 100 ms by tripping the line that connects

buses 5 and 7. The simulation results in Fig. 7 to Fig. 10 show the response of ωr,1 following each

disturbance. Four different multirate setups are considered for prediction of slow variables and solution

of fast/slow variables, namely, BEM prediction with TM solution; TM prediction with TM solution;

BEM prediction with BEM solution; and TM prediction with BEM solution. Reference trajectories
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Figure 8: ωr,1 after the load trip at bus 5 with BEM solution. hs = 0.05 s, hf = 0.005 s.

Figure 9: ωr,1 after the fault at bus 5 with TM solution. hs = 0.05 s, hf = 0.005 s.

Figure 10: ωr,1 after the fault at bus 5 with BEM solution. hs = 0.05 s, hf = 0.005 s.

here and in the remainder of the paper are obtained using a two-stage diagonally implicit Runge-Kutta

method with time step h = 0.001 s. From Fig. 7 and Fig. 9, it can be seen that TM solution can lead

to slight underdamping, which is mitigated when coupled with BEM prediction. Moreover, from Fig. 8

and Fig. 10, it can be seen that BEM solution can result in significant numerical overdamping, which

is mitigated when combined with TM predictor. The results also indicate that the multirate scheme

introduces small oscillation frequency shifts. These results are consistent with the conclusions obtained

from the matrix pencil-based SSSA in Figs. 3-5.

We further examine the effect of interpolation of the slow variables. Figure 11 shows the numerical
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error of the trajectory of machine 1 (ωr,1) following the fault at bus 5, comparing linear and cubic spline

interpolation for different time step ratios r, using TM prediction and TM solution. Figure 11a confirms

the occurrence of irregular numerical deformation when linear interpolation is used (see also Fig. 6).

In contrast, these irregularities are eliminated when cubic spline interpolation is applied, as shown in

Fig. 11b. In all cases examined, spline interpolation yields smaller errors than linear interpolation.

(a) Linear interpolation. (b) Cubic spline interpolation.

Figure 11: Trajectory error of ωr,1 under fault at bus 5: linear vs. cubic spline interpolation.

(a) Predictor: BEM vs. TM. (b) Different time steps. (c) Interpolation: linear vs. cubic spline.

Figure 12: Fault at bus 5, TM solution (hs = 0.005 s, hf = 0.001 s): algebraic residual of slow subsystem.

Another relevant issue associated with interpolation of the slow variables is the appearance of algebraic

constraint residuals. As described in Section 2.2, fast variables are solved at every step, while the slow

variables are updated at the slow time scale. During intermediate steps, the slow variables are not solved

but interpolated, so the algebraic equations involving ys may indeed exhibit residuals. Figure 12 shows

the evolution of the Euclidean norm of the algebraic constraint residuals of the slow subsystem. The

residuals increase following the disturbance and gradually decrease as the system approaches steady-state

conditions. Yet, it is worth noting that even if residuals are very small, this does not imply that the

overall numerical solution is accurate.

We finally discuss the impact of varying the partitioning threshold δ on mode deformation for both

the original WSCC system and a modified version with increased stiffness, where part of the synchronous

generation is replaced by inverter-based resources (IBRs). As seen in Fig. 13a, for a given fast time step

size, δ = 0 leads to a single-rate simulation where all variables are integrated with the fast step, resulting

in minimal mode deformation for this setup. As δ increases, more variables are assigned to the slow

subsystem, and for a fixed hs, the deformation tends to grow. We note that, in practice, varying δ would
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generally affect the selection of hs to provide a good trade-off between accuracy and computational cost.

Figures 13b and 13c compare the error during the three-phase fault at bus 5 using TM prediction with

TM solution for different values of δ; the results are consistent with those of small-signal analysis.

(a) Dominant mode numerical deformation. (b) Original system. (c) Modified system with IBRs.

Figure 13: Impact of changing the partitioning threshold δ (hs = 0.005 s, hf = 0.001 s).

5 Conclusion

The paper presents a matrix pencil-based approach for analyzing the numerical stability and accuracy

of multirate time-domain simulation schemes applied to power system DAEs. By expressing the dis-

cretized small-signal multirate model as a system of linear difference equations, our approach enables the

systematic assessment of spurious numerical mode deformation. In addition, a principled strategy for

partitioning both state and algebraic variables based on modal participation factors is discussed. The

proposed approach is used to evaluate the impact of different predictor types, integration methods, and

time step sizes, revealing nontrivial accuracy trends. Our findings support the use of small-signal tools

to guide the design of multirate schemes in practical applications.

Future work will explore the application of multirate methods in co-simulation frameworks for large-

scale power systems involving electromagnetic transients, as well as further investigate the capabilities

of PF-based partitioning strategies.
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Appendix A Derivation of (17)

By treating algebraic variables as outputs of the system’s state-space with output matrix C ∈ Rm×n,

i.e., ỹ = Cx̃, from the second equation in (9) we get that C = −g−1
y gx. Denoting the µ-th row as
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Cµ = [cµ1, . . . , cµn], ỹµ is given by:

ỹµ = Cµx̃ = cµ1x̃1 + cµ2x̃2 + · · ·+ cµnx̃n (A.1)

And, by using (15):

ỹµ =

n∑
i=1

(cµ1p
[x]
1i + · · ·+ cµnp

[x]
ni )e

sit =

n∑
i=1

p
[y]
µi e

sit

where p
[y]
µi = cµ1p

[x]
1i +· · ·+cµnp

[x]
ni is the (µ, i)-th element of the participation matrix of algebraic variables

Py as defined in (17).

Appendix B Proof of Proposition 1

We start by introducing parameters a, a∗ for the predictor used in step 1) and b, b∗, c, c∗ for the solution of

fast and slow variables in steps 3) and 4), respectively. These parameters allow the proof to accommodate

different combinations of predictor and corrector methods in a unified manner.

For FEM prediction, a = hs and a∗ = 0; for TM prediction, a = a∗ = hs/2; and for BEM prediction,

a = 0 and a∗ = hs. For the solution of fast and slow variables with TM, b = b∗ = hf/2 and c = c∗ = hs/2;

with BEM, b = c = 0, b∗ = hf , and c∗ = hs.

Incorporating the parameters a, a∗, b, b∗, c, c∗, (23), (25) and (26) are rewritten as follows:

x̃P
t+hs

= x̃t + a
(
fxx̃t + fyỹt

)
+ a∗

(
fxx̃t+hs + fyỹt+hs

)
0m,1 = gxx̃

P
t+hs

+ gyỹ
P
t+hs

(B.2)

x̃f,t+ihf
=x̃f,t+(i−1)hf

+ b∗(f f,xx̃t+ihf
+ f f,yỹt+ihf

)

+ b(f f,xx̃t+(i−1)hf
+f f,yỹt+(i−1)hf

)

0mf ,1 = b∗
(
gf,xx̃t+ihf

+ gf,yỹt+ihf

) (B.3)

x̃s,t+hs
= x̃s,t + c∗(f s,xx̃t+hs

+ f s,yỹt+hs
) + c(f s,xx̃t + f s,yỹt)

0ms,1 = c∗
(
gs,xx̃t+hs

+ gs,yỹt+hs

) (B.4)

We define:

fx =

fff,x f fs,x

f sf,x f ss,x

 (B.5)

where fff,x ∈ Rnf×nf , f fs,x ∈ Rnf×ns , f sf,x ∈ Rns×nf and f ss,x ∈ Rns×ns . Similarly for fy, gx and gy.
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Dividing (B.2) into fast and slow timescales, we have:

x̃P
f,t+hs

= x̃f,t + afff,xx̃f,t + af fs,xx̃s,t + afff,yỹf,t + af fs,yỹs,t

+ a∗fff,xx̃f,t+hs
+ a∗f fs,xx̃s,t+hs

+ a∗fff,yỹf,t+hs
+ a∗f fs,yỹs,t+hs

(B.6)

x̃P
s,t+hs

= x̃s,t + af fs,xx̃f,t + af ss,xx̃s,t + af sf,yỹf,t + af ss,yỹs,t

+ a∗f fs,xx̃f,t+hs
+ a∗f ss,xx̃s,t+hs

+ a∗f fs,yỹf,t+hs
+ a∗f ss,yỹs,t+hs

(B.7)

0mf ,1 = gff,xx̃
P
f,t+hs

+ gfs,xx̃
P
s,t+hs

+ gff,yỹ
P
f,t+hs

+ gfs,yỹ
P
s,t+hs

(B.8)

0ms,1 = gsf,xx̃
P
f,t+hs

+ gss,xx̃
P
s,t+hs

+ gsf,yỹ
P
f,t+hs

+ gss,yỹ
P
s,t+hs

(B.9)

From (B.8), we have:

ỹP
f,t+hs

=− g−1
ff,y(gff,xx̃

P
f,t+hs

+ gfs,xx̃
P
s,t+hs

+ gfs,yỹ
P
s,t+hs

) (B.10)

Note that the invertibility of gff,y is used here to facilitate derivation; however, it is not strictly

required provided that a sparse matrix formulation is adopted, similarly e.g., to [27].

Based on (B.6)-(B.10), we get the expression of ỹP
s,t+hs

:

ỹP
s,t+hs

= (−H3
−1H1 +M1)x̃f,t + (−H3

−1H1 +M2)x̃s,t

+M3ỹf,t+M4ỹs,t +M∗
1x̃f,t+hs+M∗

2x̃s,t+hs (B.11)

+M∗
3ỹf,t+hs

+M∗
4ỹs,t+hs

where

M1=−aH3
−1H1fff,x − aH3

−1H2f sf,x

M2=−aH3
−1H1f fs,x − aH3

−1H2f ss,x

M3=−aH3
−1H1fff,y − aH3

−1H2f sf,y

M4=−aH3
−1H1f fs,y − aH3

−1H2f ss,y

Replace a in M1 to M4 as a∗ for M∗
1 to M∗

4. For i = 1, combining (24), (B.3) and (B.11) establishes the

relationship between xt+ihf
, xt+(i−1)hf

and xt+hs
over the interval [t(i − 1)hf , t + ihf ] for the multirate

method (i ≤ r − 1):

−Cixt+hs
+ Zixt+ihf

= Bixt+(i−1)hf
(B.12)
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with

Ci=
i

r



0nf ,nf
0nf ,ns

0nf ,mf
0nf ,ms

a∗f sf,x a∗f ss,x a∗f sf,y a∗f ss,y

0mf ,nf
0mf ,ns

0mf ,mf
0mf ,ms

M∗
1 M∗

2 M∗
3 M∗

4


Zi = Inf

⊕0ns+m+(−bInf
)⊕Ins

⊕(−bImf
)⊕Ims

×



fff,x f fs,x fff,y f fs,y

0ns,nf
Ins 0ns,mf

0ns,ms

gff,x gfs,x gff,y gfs,y

0ms,nf
0ms,ns

0ms,mf
Ims



Bi = Inf
⊕0ns+m+Ci+ (b∗Inf

)⊕Ins⊕(b∗Imf
)⊕(

i

r
)Ims

×



fff,x f fs,x fff,y f fs,y

af sf,x Ins
+ af ss,x af sf,y af ss,y

gff,x gfs,x gff,y gfs,y

−H3
−1H1 +M1 −H3

−1H2 +M2 M3 ( ri − 1)Ims
+M4



At i = r, the slow variables are integrated with the TM, and the relationship between xt+(r−1)hf
, xt

and xt+hs over the interval [t+ (r − 1)hf , t+ hs] for the multirate method:

Zrxt+hs = Brxt+(r−1)hf
+Crxt (B.13)

with

Zr = E− (bInf
⊕cIns

⊕bImf
⊕cIms

)A

Cr = 0nf
⊕ Ins

⊕ 0m + Inf
⊕c∗Ins

⊕Imf
⊕c∗Ims

×



0nf
0nf ,ns

0nf ,mf
0nf ,ms

f sf,x f ss,x f sf,y f ss,y

0mf ,nf
0mf ,ns

0mf
0mf ,ms

gsf,x gss,x gsf,y gss,y



Br = Inf
⊕0ns+m+(b∗Inf

)⊕Ins
⊕(b∗Imf

)⊕Ims
×



fff,x f fs,x fff,y f fs,y

0ns,nf
0ns

0ns,mf
0ns,ms

gff,x gfs,x gff,y gfs,y

0ms,nf
0ms,ns

0ms,mf
0ms


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Finally, we arrive to a system in the form of (18), where:

Fr =


Zr

...
. . .

−C1 Z1

 , Gr =


Br Cr

. . .

B1


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