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1. Introduction

Singular linear systems of differential & difference equations appear in control theory [1], circuit theory [2], and
in modeling (dynamics) of electrical power systems [3]. Other interesting applications of a singular system are the
constrained mechanical & robotic system described in [4], and in finance, the input-output Leontief model including
its several important extensions [5].

In the last decade, many authors have studied problems of differential equations of fractional order, and have derived
interesting results on different types of problems for given initial or boundary conditions, see [6-16]. Research has
also been developed for other type of fractional operators such as the fractional nabla & delta operator applied to
difference equations, see [12,17-24]. Focus has also been given on the mathematical modeling of many phenomena by
using fractional operators. The theory of fractional differential equations (FDEs) is a promising tool for applications in
physics [25], biology [26], and control theory, see [16,27-33]. Fractional-order operators are not just a generalization of
the classical integer-order operators. Because of the way they are defined, more elaborated techniques are required for
qualitative studies. In many practical cases the existing techniques are not enough.

Despite several studies, there are still parts missing for a complete and coherent theory of systems of FDEs in order
to use this type of systems as a tool in the applied sciences in a similar way to the classical case. In addition, generalized
FDEs and cases such as singularities of certain systems of FDEs have been mostly avoided in the framework of fractional
calculus. Hence, explicit and easily testable methods are required in order to solve generalized systems of FDEs, so that
applied researchers can redesign their models using fractional operators where this is appropriate.

The following notation is adopted throughout the paper. First order derivatives are indicated as Y'(x) = %Y(x); L
denotes the Laplace transform [7]; and 0 indicates the zero matrix of i rows and j columns. Let B,, € C"1*™ B, € C"2*"2,
..., By, € C*"_ Then, the direct sum B,, ®B,, ®- - - ®B,, denotes the block diagonal matrix blockdiag (Bn1 ;PR Bnr).
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Definition 1.1 (See [7]). Let Y : [0, +00) — R™ ! t — Y, denote a column of continuous and differentiable functions.
Then, the Caputo (C) fractional derivative of order a, 0 < a < 1, is defined by:
-l t
(a) — yla) _ —ay/
YoO) =YY(t) = ——— t—x)""Y'(x)|dx . 1

0 =00 = s [ [0 =0rv )] M
In this article, we consider the following singular system:

Ep X, = AprXpr + By U (2)
where E,, A,y € C™" can be non-square, or square and singular, X,r € C"™', B,, € C™P, U € CP*!. Let the vector of the
system output £ € C¥*1, be:

£ = CprXpr + DpeU ()

where G, € caxn, D, € C3*P_ Then, a fractional order controller for the system (2)-(3), can be described by a set of
fractional differential and algebraic equations as follows:

Ech, + Eczxc(y) =AcXc + Bcg 5

(4)
U= CCXC + ch 5

where y is the controller’s fractional order derivative; X, € R, is the vector of the controller states; E., A. € coxv,
B. € C"*4, C. € CP*¥, D, € CP*4, Combining (2), (3), and (4) yields the closed-loop system representation. In matrix form:

Epr Oﬁ’v Oﬁ’ﬁ Xpr ' Oﬁ,n Oﬁ,v Oﬁ,fl XPT )
Of),n Eq 017,5 Xc + Oﬁ,n Ecz 0\'),[) Xc =
05n O Opp u O5n O Opp u

Apr Oﬁ,u Bpr Xpr
B Cpr Ac Bchr Xc >
D.Cyy  C. DDy —1j U

or, equivalently,

EX' + EX") = AX | (5)

where
i Epr Oﬁ,v Oﬁ,ﬁ T Xpr
E= OD,n EC] 017,[7 s X= Xe s
L Opn 050 Opp u
and
~ [ Oin Oy Oap ] Apr Ony Byr
E=| 030 E, 035 |, A=| BGCr A B.Dy: .
L O5n 05, 055 DGy  Cc  DeDpr — 1

The article is organized as follows: in Section 2 we use the (C) fractional derivative as defined in (1), and study singular
linear system of FDEs (5). We study the existence and uniqueness of solutions and provide two different types of formulas
for the case that there exist solutions. In addition, we study stability properties, and finally, in Section 3 we provide
numerical examples to justify our theory.

2. Main results

In this section, we present our main results. First, we provide the following property of the (C) fractional derivative
[13]: Let ¢(t), ¢(t) € c'[0, T]™! for some T > 0. Then, [¢(t)]®) = [¢PB)(£)@ = ¢ltP)(t), where o, 8 € RT, and
a + B < 1. We rewrite (5) as:

EX(r+8) + EXY) — AX ,
where y + 8 = 1. We use the notation:
Y1=X, Yy = X0
Then, we obtain y\”) = X = v, and Ey") = EX' = —Ev, + Ay. Or, equivalently:
I

b 05 DT %5 T ][
055 E v A  -E V2 |

™t



L. Dassios, G. Tzounas and F. Milano / Journal of Computational and Applied Mathematics 378 (2020) 112919 3

where p =+ D +p, p =n+v+p, andl;; is a p x p matrix with ones in its diagonal and zeros in the rest entries.
Equivalently, we have:

FYa(t) = GY(t) (6)

where

)
F:[ .o O ] YA:[ vy ]
0/3”;, E 1//25

| %5 I | v
o= % ] =[]

where F,G € C"™*™, Y : [0, +00) — C™ and B,y € (0, 1), where, for simplicity, r = 2p = r and m = 2p = m. The
matrices F, G can be non-square (r # m) or square (r = m) with F singular (det(F)=0). Note that system (6) is equivalent
to the closed loop system (5).

Definition 2.1. Assume F, G € C™*™, 8,y € (0, 1), an arbitrary s € C, and an inverse matrix function

SVI;, 0,3, i|

0,3_,3 Sﬂl
with z € C™™. Then, the matrix pencil zF — G is called:

A 1l

z:=2(s)=5"I; ®sI; = |:

=l

1. Regular if r = m, i.e. F, G are square matrices, and det(zF — G) # 0;
2. Singular if

e 1 = m, ie. F, G are non-square matrices; or
e r = m, i.e. F, G are square matrices, and det(zF — G) = 0.

Remark 2.1. Given F, G € C"™*™, B, y € (0, 1), an arbitrary s € C and an inverse function z = z(s) € C, if the pencil zF — G
is:

(a) regular, since det(zF — G) # 0, there exists a matrix polynomial &(s) : C — R™™ (which can be computed via the
Gauss-Jordan elimination method, see [34]) such that:

O(s)(zF — G) = A(s), (7)

where A(s) : C — R™™ is a diagonal matrix polynomial with non-zero elements;
(b) singular and r > m, there exists a matrix polynomial ®(s) : C — R™" (which can be computed via the
Gauss-Jordan elimination method) such that:

@(s)(zF—G):[ é(snz } with @(s):[ 8;83 } (8)

where A(s) : C — R™>™ with my+ry = r, is a matrix such that if [lij]}i’,ﬁiﬂl are its elements, for i = j all elements
are non-zero and for i # j all elements are zero and ®1(s) € R™*", @,(s) € R1*",

We now study the existence of solutions of system (6). We state the following Theorem:
Theorem 2.1. Consider the system of FDEs (G), and let

y—17. o
w=w(s) =" &5 ; = [ T0ns /95’1/) ] '
05,5 PG

Then, there exist solutions for (6) if and only if either of the two following conditions is satisfied:
(a) the pencil of the system is regular; in this case, the general solution is given by:
Y(t)=@(1)C, 9)

where &(t) = £~ AT(s)O(s)wF}, A(s), O(s) are defined in (7) and C € R™! is an unknown constant vector; or
(b) the pencil of the system is singular with r > m and:

O1(S)F = O,y 1, and m; =m. (10)
In this case, the general solution is given by:

Y(t) = w(t)C, (11)
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where ¥ (t) = £L7H{AT(S)O1(s)wF), A(s), O(s), O1(s), @(s) are defined in (8), C € R™! is an unknown constant
vector.

Proof. Let £{Y(t)} = Z(s), be the Laplace transform of Y(t). Using the fractional derivative as defined in (1), by applying
the Laplace transform £ into (6), see [7,11], we get:

L{FYA(t)} = £{GY(¢t)} .

Note that
dr T
vas | @l ey,
055 s |
and hence
— B dv
FYA — I'si) 0[’»/5 dtv I/’ PP Y(f)
0, E 0., ’
L , | VAP B o

or, equivalently,

[ a v
o= | arler Op [ Y } | 075
= y _ ) '
055 a7E V2 0;, ELL2

Thus, £{FY2(t)} = F£{Y?(t)}. Furthermore:
ORI
Fﬁ{[ w0 | =ceven,
or, equivalently,

[ 57 Liyn(e) = ~'9(0) ] _
f L Sﬁﬁ{w;(t)} —sﬂ”w;(O) ] = GL{Y(t)} ,

or, equivalently,

[ s L{yn(t) s 1y(0) |
F | sPL{ya(t) }_F[ P~ 191,(0) ]—GE{Y(t)},

or, equivalently,

[ 571, 05 |[ Llyn(t)) 7 05 v1(0) | _
F i 0/3,; 551,2 H L) :|—F|: OM" Sﬁf{;ﬁ H 1,(0) ]_Gﬁ{Y(t)},
or, equivalently,

Z(sFLLY(6)} — w(s)FY(0) = GL{Y(t)} ,

or, equivalently,

ZFZ(s) — FwY(0) = GZ(s) ,
or, equivalently,

(zF — G)Z(s) = wFYy .

Where Yy = Y(0), i.e. the initial condition of (6). Since we assume that Yy is unknown we can use an unknown constant
vector C € C™! and give to the above expression the following form:

(zF — G)Z(s) = wFC . (12)

There are two cases. The first is (a) r = m and det(zF — G) to be equal to a fractional polynomial with order less than
B + y (regular pencil). The second case is (b) r  m or r = m and det(zF — G) = 0, V arbitrary s € C (singular pencil).

In the case of (a), since the pencil is assumed regular and det(zF — G) # 0, there exists a matrix polynomial
O(s) : C — R™™ (which can be computed via the Gauss-Jordan elimination method, see [34]) such that:

O(s)(zF — G) = A(s) ,

where A(s) : C — R™™ is a diagonal matrix polynomial with non-zero elements in its diagonal. Then, by multiplying
(12) with ©(s), we get:

O(s)(zF — G)Z(s) = wO(s)FC ,
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or, equivalently,

A(S)Z(s) = wO(S)FC ,
or, equivalently,

Z(s) = wATYs)O(S)FC .

The inverse Laplace transform of the matrix w A~1(s)@(s)F = w(zF —G)~'F always exists because its elements are fractions
of fractional polynomials with the order of the polynomial in the denominator always being higher than the order of the
polynomial in the numerator. Let £~ {wA~!(s)®(s)F} = &(t). Then, Y(t) is given by (9).

In the case of (b), if r < m there are at least m — r unknown functions and m equations. Hence Z(s) in system (12)
cannot be defined uniquely. If r > m, there exists a matrix polynomial &(s) : C — R"*" (which can be computed via the
Gauss-Jordan elimination method), such that:

O(s)zF — G) = [ AGS) ]

1<j<m
1<i<m

where A(s) : C — R™>*™, with my 4+ r; = r, is a matrix such that if [l;]
non-zero and for i # j all elements are zero. Let:

on=[ &5 ]

where ©1(s) € R™M*", @,(s) € R"*", Then, system (12) has a unique solution if and only if (10) holds. In any other case,
we have more unknown functions than equations or no solutions. If (10) holds, then:

O(s)(zF — G) = [ Als) ]

ry,m

are its elements, for i = j all elements are

and we have

O(s)(zF — G)Z(s) = O(s)wFC ,
or, equivalently,

A(S)Z(s) = O1(s)wFC ,
or, equivalently,

Z(s) = A71(s)O;(s)wFC .

The inverse Laplace transform of A~'(s)@;(s)wF always exists because it is a matrix with elements fractions of fractional
polynomials and with the order of the polynomial in the denominator always being higher than the order of the
polynomial in the numerator. Let £~ 1{A™1(s)®;(s)wF} = ¥(t). Then, Y(t) is given (11). If r = m, there exists a matrix
polynomial ®(s) : C — R™" (which can be computed via the Gauss-Jordan elimination method) such that:

O(s)(zF — G) = A(S) ® Oy, m,

where A(s) : C — R""™™ with ry < my (because we apply Gauss-Jordan elimination method at the rows). All elements of
A(s) are zero except the ones in the diagonal with all non-zero elements. Also, ry +r, = m; +m; = m. Then, system (12)
could have solutions if and only if r, = m, = 0, i.e. r; = my = m; In any other case we have more unknown functions
than equations or no solutions. But since we are in the case where r = m and the pencil is singular, i.e. det(zF — G) = 0,
this assumption can never hold. To sum up, there exist solutions for the system if the pencil is regular or singular with
r > mand A(s) m x m and ©@,(s)F = Op_r 1. The proof is complete.

Having identified the conditions under which there exist solutions for singular systems in the form of (6), we can now
present the following Remark:

Remark 2.2. For the (C) fractional derivative, if there exist solutions for system (6), then in the case that the pencil of the
system is regular, the general solution is given by (9). In the case that the pencil of the system is singular with r > m
and (10) holds, the general solution is given by (11). In both cases, C is an unknown constant vector related to the initial
conditions of the system since we used the Laplace transform. Note that:

(a) There are two types of initial conditions: consistent, which lead the system to have a unique solution; and
non-consistent, which, if given, lead the system to have infinite solutions.

(b) It is not guaranteed that for given initial conditions a singular system of FDEs will have a unique solution. If the
given initial conditions are consistent and there exist solutions for (6), we replace C = Y in the formulas of the
general solutions (9) and (11). However, if the given initial conditions are non-consistent but there exist solutions
for (6), then the general solutions (9) and (11) hold for t > 0 and the system is impulsive.
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(c) The next subsection provides a criterion on how to identify if the given initial conditions are consistent or non-
consistent. For the case that the initial conditions are consistent, the matrix functions ®(t) and ¥ (t) can have
elements defined for t > 0 and the columns &(t)Yy and ¥ (t)Yp have all their elements always defined for t > 0.

Based on Theorem 2.1 and the assumptions for existence of solutions of system (6), we can provide additional formulas
by using matrix pencil theory.

From Theorem 2.1, there exist solutions for system (6) if the pencil is either regular, or singular with r > m and (10)
holds. Hence, we focus on the case that r > m. If (6) has a regular pencil, then sF — G is also a regular pencil. Hence and
because of the structure of F there exist invariants of the following type:

e 1 finite eigenvalues of algebraic multiplicity p;,i=1,2, ..., u;
e an infinite eigenvalue of algebraic multiplicity q,

where Z: 1 bi = p, p+ q = m. There exist non-singular matrices P, Q € C™™ such that:

PFQ =1, ® Hy ,
PGQ =], @1, .

where J,e CP*P, Hye C9*9 appropriate matrices with H, a nilpotent matrix with index g., constructed by using the
algebraic multiplicity of the infinite eigenvalue, J, is a Jordan matrix, constructed by the finite eigenvalues of the pencil
and their algebraic multiplicity. Let

P, ]

P=| gt | a=[Q Qs Qr Qs

Pyp

where P, € CP*™ Py g € CP*™ P, , € CI*™ P, 5 € C™*™ and Q,, € C™P, Q,5 € C™P, Qu, € C™4,Q, 5 € C™¥4.
Equivalently, if we set:

P1=|:IIZ::; ) Q [pr quﬂ]’

(13)

P2=[P” L Q=[Qy sl

=[,’§;], e=[Q Q] (14)

with Py € CP*™, P, € C9*™, and Q, € C"™*P, Q; € C™9. By using this notation, and I, = I; & I, J, = J; @ J;, (13) can be
written in the following form:

PFRQ =1; ®1; ® H; ® Hz ,

PGQ =0 ®; D5 .
We provide the following theorem:

Theorem 2.2. If there exist solutions for the system of FDEs (6), then:

(a) Using the spectrum of the pencil sF — G, the general solution of (6) is given by:

Tt S "
QpZ SRR S 1o (15)
.p TkB+1) P

where J, € (C"Xp, is a Jordan matrix constructed by the finite eigenvalues of the pencil sF — G, and their algebraic
multiplicity, while Q, € C™*P is a matrix constructed by the linear independent eigenvectors related to the finite
eigenvalues of the pencil sF — G, and C € CP*! is a constant vector.

(b) System (6) is asymptotically stable if all eigenvalues X of the pencil sSF — G satisfy:

T
|Arg(A)| > vy (rad) , (16)
where y = min{y,1— y}.

Proof. For (a), we first observe that:

) AL PO VO
FYA:F[ w%ﬁ) :|:F ath R |: 51 ]
¥, 056 arlp 2

dav

als Opp gy
0;; LI,

p.p GBlh
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By using this notation we can write (6) in the form:

-
L P
i B0 FY = Gy
055  arlp |

and by using the transformation Y(t) = QZ(t) we obtain:

[ 05,
e pFz =6Qz
055 sl

whereby, multiplying by P and using (13) and (14), we get:

(r)
i)m Z(t)
A ]
Genemem)| 2" |=gesenen| 2O |,
z(t) Z4(t)
ZPt) Zq(t)
where
Zy(t)
|z
0=z |
Zi(t)

with Zy(t) € CP1, Z5(t) € CP*1, Z;(t) e C¥*1, Z(t) € CI*. From the above expressions we arrive at the subsystems:
(r)

Z(t) = JpZy(t)

’() (17)
Zp ) =Jpz5(t)

and
H@Zéy)(t) =Z;(t);
HaZdP(6) = Zy(t) .

By applying the Laplace transform £ into (17), we get:
£(Z(0) = JpiZy(0) ;
iz = Lzt

Let £{Zy(t)} = Wj(s), L{Z(t)} = Wj(s), and Zpy = Z(0), Zso = Z5(0), i.e. the initial condition of (17). Since we assume that
Z5(0), Z5(0) are unknown we set Z5(0) = Cy, Z5(0) = G, where Cy, C; unknown columns, and give to the above expression
the following form:

(8"l — Jp)Wp(s) = s77'Cy 5
(s"I; — Jp)W;(s) = sP Gy
or, equivalently,

Wi(s) = s 1(s"I; — J3)7'Cr ;
Wﬁ(S) = Sﬂ_l(S'BIﬁ _-lﬁ)_1C2 .
By taking into account that (s"I — J;)~' = Y p2 s~k V]" and (s’I; — =Y ("“’ﬂj}j, we have:
)= Yitos UG
00 —Bk—17k (19)
5(8) = D kloS G
Then:
Z vk ch
k=0 Tlky+11p -1 >

Pk ke
Zk =0 r1<,3+1)]p 2
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Let g, be the index of the nilpotent matrix Hg, i.e. Hg* = 03,3. Then, if we obtain the following matrix equations:

HZP(t) = Z,(t)
H2ZPP(t) = Haz ()
H3ZPP(t) = H2Z7P(t)
Hiz (0 = w27

qs—1 «—118 ] qsx—2 qx—21B
H%*7 B H *—12 q«—118

by taking the sum of the above equations and using the fact that Hg* = 03,3, we arrive at Hy = 03 ¢. Similarly, Hy = 03 ;.
Hence, the solution of the subsystem (18) is:

Zy(t)=0g1 - (21)

To conclude, by combining (20) and (21), for the case of a regular pencil, system (6) has the solution:

00 tvk k
2 ko r(ky+1)]izcl
YO =QZt)=[ Gy Qs Q ] Yo G |
0g,1

or, equivalently,

- tyk k - tﬁk k
Y(©)= Q. ,Z; I'(ky + 1)Jﬁc1 + Qo ; r'(kp + <

From here, we arrive at (15). Next, we consider system (6) with a singular pencil and r > m. In general, the class of sSF — G
is then characterized by a uniquely defined element, known as the complex Kronecker canonical form, see [35], specified
by the complete set of invariants of the singular pencil sF — G. This is the set of the finite-infinite eigenvalues and the
minimal column-row indices. In the case of r > m, there exist only row minimal indices. Let \; be the left null space of
a matrix. Then, the equations V(s)(sF — G) = 0y, have solutions in V(s), which are vectors in the rational vector spaces
Ni(sF — G). The binary vectors V' (s) express dependence relationships among the rows of sF — G. Note that V(s) € C"™*!
are polynomial vectors. Let t = dimN(sF — G). It is known that V(sF — G), as rational vector spaces, are spanned by
minimal polynomial bases of minimal degrees:

si= == =0<Ghp1 <+ < Ghrk»

which is the set of row minimal indices of sF — G. This means there are h + k row minimal indices, but k non-zero row
minimal indices. We are interested only in the k non zero minimal indices. To sum up, the invariants of a singular pencil
with r > m are the finite-infinite eigenvalues of the pencil and the minimal row indices as described above. Following
the above given analysis, there exist non-singular matrices P, Q with P € C™", Q € C™™, such that:
PFQ =Fx =1, ®H, ®F, ,
PGQZGK ZJP@Iq@Gg B
where J, is the Jordan matrix for the finite eigenvalues, Hy a nilpotent matrix with index g, which is actually the Jordan
matrix of the zero eigenvalue of the pencil sG — F. The matrices F, G, are defined as:

I I I
F. = Sh+1 Sh+2 . Sh+k
° |: 01,6141 ] ® |: 01,442 ] ® ® |: 01 hy :| '

(22)

(23)
Gg — |: 011,§h+1 ] @ |: 011,§h+z ] ®-D |: 011,§h+k ] ,
Sh+1 Sh+2 Sh+k
withp+q+ fozl[ghﬂ-] +k=r,p+q+ Z;‘:][gfw,-] = m. Finally, the matrices P, Q can be written as:
Py
P=| P |, Q=[Q Q Q] (24)
Ps

with P; e (Cpxr' P, € (qur' P; € (Cglxr, g1 = k+ Z?=1[§h+i] and Qp S mep' Qq € (meq, Q_g € C™ <2 and G = Z?:l[thri]'
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y substituting the transformation Y(t) = QZ(t) into (6), multiplying by P, using (22), (24) and setting Z(t)

B

Zy(t)

Zy(t) |, Zy(t) € CP*1, Z,(t) € C9T and Z.(t) € C2*1, we arrive at the subsystems (17), (18), and:
(t)

FZPAt) = G.Z((t) . (25)
For the subsystem (25), let
Zg44(0)
Zg,,5(t)
Z)y=| |z (ecs X i=12 Kk (26)
Z§h+k(t)
with
Z§h+i,1(t)
Sheis2 t
Zg,.(t)= : . (27)

L Zepyionai(E)
By replacing (23) into (25), we get:

I§h+i A (t) = |: Ol,§h+i i|Z§h+i(t) ,

o
Lopei | oM Shei

or, equivalently, by using the above expressions:

B (B)
! 0 0 Z§h+i,1(t) 0 0 0 Zg _l(t)
o1 ... 0 ) 1 0 ... 0 heis
Z§h+i’2(t) _ . . . Z§h+i,2(t)
00 ... 1 : 00 . o :
- 00 ..0 Zé‘:}ri&hﬂ(t) 0 0 ... 1 Z§h+i,§h+i(t)

or, equivalently,

(8)
Z§h+is1(t) =0

(B) _
Zs‘h+i~2(t) = Zgi(1)

(B)
Zapioansi(t) = Zg g gppi—1(0)

= Z§h+is§h+i(t)

We have a system of ¢u;+1 FDEs and ¢p; unknowns. Starting from the last equation, we get the solutions:

Z§h+i=§h+i(t) =0
Zs‘h+iq§h+i*
sheivsnri—2() = (28)

Zg,a(t)=0.

In order to solve the system we used the last g; equations and concluded that system (25) has the zero solution. Hence,
also in this case, the solutions are given by (15). For (b) we can rewrite the Jordan matrix in the form:

B =l () ® ... 05, (M),

J= )@ @5, ()

where
A1 ... 0 O
0o 2 ... 0 O
i)=1 + © .t | eChP i=1,2,...,u
0 O Ao 1
0 O 0 A
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In addition, the matrix Q, can be written in the form:

Qﬁ = [ U]j,l ce.o U2 U .. quf’ﬂ oo Up2 Uy ] s
Qﬁ = [ U]y[,] . V1,2 V1,1 . UIM_JM N Up,2 Uu,1 ] s
where u;;, j = 1,2,..., p; linear independent eigenvectors, vij, j = 1,2, ..., p; linear independent eigenvectors of ;,
i=1,2,..., u. Furthermore, C;, C; can be written as:
T
C] = [ Clqﬁl ... €02 €11 ... CMYﬁM oo Cu2 Cun ] s
T
Cz = [ C1.p, ... C2 €11 ... Cl’-«f’u oo Cu2 Cun ] s

where¢;eC,i=1,2,...,0,j=1,2,.. ., Pi» dijeC,i=1,2,...,u,j=1,2,..., piconstants. If we replace the above
expressions in the general solution we arrive at:

n o oo
ZZ \yg:w X; Zcu G-t it
pan &

i=1
no oo pi
(Vaity" _
ZZ R EnP LI LT
i=1 k=0 j=1 k=1

where ¢;j_(k—1), dij——1) € C, constants. From the transformation Y(t) = QZ(t) from the proof in (a), we have Y(t) =
QpZy(t) or, equivalently,

Y =Q)7, .
From (14) we have that P;EQ, = I,. By multiplying the above expression by P;E we have:
PiEY = P1EQ,Z, ,
or, equivalently,
Z, = PiEY .
Hence:
Z,(0) = P1EY(0) .

From (14), we have:

b,
P = .
1 i P],ﬂ ]
We set
i W1,p, ] i @1,p
W1,2 w1,2
W11 1,1
Py = , P, = ,
Wy py Dppy
Wy,2 w2
L Wpa L ®pa1
where w;j, j = 1,2,...,p, wij, j = 1,2, ..., p; linear independent left eigenvectors of A;, i = 1,2, ..., u. By replacing

the above expressions into the general solution we arrive at:

(2N y vk bi j
Y(t) = Z ﬁt) ) Z(Z tk_lwi,j—(k—l)EY(O))ui,j+

i=1 k=0 (ky +1 j=1 k=1

Mmoo ﬂk Di J
P3P F%;QUZ (e oY O)u
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System (6) is asymptotically stable if lim;_, ;, Y(t) = Oy, 1. This holds if all eigenvalues A of the pencil sF — G satisfy:

{Arg(k) Arg(k)} b
max , > — (rad),
y 11—y

2
or, equivalently (16) holds. The proof is complete.

Having identified the conditions under which there exist solutions for singular systems in the form of (6), we can now
present the following Corollary:

Corollary 2.1. If there exist solutions for system (6), then in the case that:

(a) The pencil of the system is regular;
(b) The pencil of the system is singular with r > m.

Then, for given initial conditions Y(ty) = Yo, the solution is unique if and only if:
Yo € colspan(Q,) . (29)
The solution is then given by (15) and C is the unique solution of the linear system:

QC =Y. (30)

Proof. This is a direct result from Theorem 2.2. For both (a), (b) if we use the formula (15) for t = 0 we get:
Y(0) = Q,C,

and we arrive at condition (29) because C is assumed an unknown vector. The above linear system has always a unique
solution for C since the matrix Q, has linear independent columns. The proof is complete.

Theorem 2.2 can be used to further develop methods to measure the participation of system eigenvalues in system
states [36] for singular linear systems of FDEs as well as for the extension of linear fractional operators, see [37], and their
applications into electrical power systems, see [38].

3. Numerical examples

In this section, we provide two examples. In the first example, we exploit the main results of this article by studying
a small linear singular system of differential equations with regular pencil. In the second example, we study the damping
of the electro-mechanical oscillations of a 3-bus power system through a fractional order power system stabilizer.

3.1. Numerical example 1

We consider system (2) with:

4 9 9 -2 10 7 3
1 5 2 2 3 11
1 0 -2 -2 6 41
Ey=|5 -2 -3 18 3 16 2 |,
6 8 6 8 6 14 2
2 11 3 6 6 2 2
4 5 5 6 2 9 1

r—15 —43 -39 4 -35 -22 -5
-3 -19 -2 -5 —-12 -2 1
-4 —-16 -30 6 -9 -1 -7
Ap=| —25 -2 3 —72 -3 -74 —4 |, B,=
—27 -32 -23 -39 —24 —66 -5
-8 —41 —-15 —18 —24 —8 -8
-18 —-15 -9 —29 —13 —48 -1

O, OO O0OCO0OCO

The matrix pencil sE,, — sAp, has p = 5 finite, distinct eigenvalues Ay = =5, A, = —4, A3 =1, A4 = =2 and A5 = —3.
The pencil also has the eigenvalue Ag = oo with algebraic multiplicity ¢ = 2. The rightmost eigenvalue of the pencil is
A3 > 0, and thus the system is unstable. The output of the system is given by (3), where:

Gr=[0 0 0 0 0 1 0], Dy =0.
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Ky

é kz ++ U

4’(}

sY

Fig. 1. FOPI block diagram.

In order to stabilize the system, we consider the following simple form of controller (4):

Xc(y) = k& ,

U =X+ k£ . (31)

Eq. (31) describes a fractional order proportional-integral controller (FOPI), where k, = 7, k; = 10, are the proportional
and integral gains, respectively; y = 0.6 is the controller’s fractional order. The block diagram of the FOPI is shown in
Fig. 1.

Then, the closed-loop system is described by (5), where
T4 9 9 -2 10 7 3 0 07 0 0 0 0 0 0O 0O 0 017
1 5 2 2 3 1 1 00 0 000 0O O0OO0OTO
1 0 -2 -2 6 41 00 0 000 0O OOO0OT O
5 -2 -3 18 3 16 2 0 0 _ 0 000 0O O0OOO0OT O
E=( 6 8 6 8 6 14 2 00|, E=|0 0 0 0 O0O0OOTO0OTO0/{,
2 11 3 6 6 2 2 00 0 00O O OOTUO0OTPO
4 5 5 6 2 9 1 0 0 0 000 0 O O0OO0OTO
0 0 0 0 0 O 0 0O 0 000 0 OOT1TTO
| 0 0 O O O 0 0 0 0 | L 0O 0O 00OO0O 0 0 0
 —15 —43 -39 4 -35 -22 -5 0 0 7]
-3 -19 -2 -5 -—-12 =2 10 0
-4 —-16 =30 6 -9 -1 -7 0 0
—25 —2 3 =72 -3 =74 -4 0 0
A=| =27 -32 -23 -39 —-24 -66 -5 0 0
-8 —-41 -15 -18 -24 -8 -8 0 1.0
-18 —-15 -9 —-29 —-13 —-48 -1 0 0
0 0 0 0 0 10 0 0 0
0 0 0 0 0 7 0 1 -1 |

The stability of the closed-loop system can be checked by calculating the eigenvalues of the matrix pencil sF — G, where
F, G, are defined in (6). In our case:

o

[eNeNeNeNelNeNololo)
OO OO0 OOOO0O

|
N

OCOARANIITUIRL, m NOOODODODODOOO
b
co

OO~ NNNRLR R, WOODODODOOOOOo
[N eleNelelelolololNolo ool lo oo RN o)
(=N eNelNelNololololololNo oo oo oo o)

oomwm‘l”l_,wnoooooooooo
.

CONDOAIWRWZ

CoOoNEaER—_,NOOOOOOOOO

OO0 0000O00O00OOOOO
OO0 O00O0OO0OO —0O
0000000000000~
OO0 O0OO—,0O0OO
CO0O00000000O0O0O~RO0OO0O0O
CO0O00000000O—~00O0O0O0O
OO0~ O0O0OO0O0OO0OO
CO0O000000O0O 00000000
oou-:ooibomcoooooooooo

OO OO0 O0OO~R0OOOO

[N oo NerRo.]
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3k i
: O
[
21+ .o
= :
g 1F 0
= :
5 Ok @ p
45 :
= 1t Pe
= :
ol .
4
: °
—3F i
4 L : L L
-2 -1 0 1 2 3

Real part

Fig. 2. Numerical example 1. Eigenvalues of sF — G. Shaded is the region of instability |¢| < 0.628 rad.

r o0 0 0 0 0 0 0 0 0 1 OO0 O0O O O0OO0O O 07
0 0 0 0 0 0 o 0 0 01 0O OO0OO0O O O
0 0 0 0 0 0 o o 0 0O0O1TO0OOO0OO0O O O
0 0 0 0 0 0 o 0o 0 0O0OOT1TO0OTO0OO0O O O
0 0 0 0 0 0 0o 0 0 00OOT1TUOUO O O
0 0 0 0 0 0 0o 0 0 0O0OOOOT11TO0O O O
0 0 0 0 0 0 0o 0 0 0O0OOOOOT1T O O
0 0 0 0 0 0 0o o 0 0O0OO0OOOO OO 1T O
C= 0 0 0 0 0 0 o 0 0 00O OOO0OO0O 0O 1
| —-15 —-43 -39 4 -3 -22 -5 0 0 0O OOOO0OO0O 0O o0 f
-3 -19 -2 -5 -12 =2 1 0 0 0O O OOOO O O
-4 —-16 -30 6 -9 -1 -7 0 0 0 O0O O O O OO O O
-25 =2 3 -72 -3 -74 -4 0 0 O O O O O O O 0 O
-27 -32 -23 -39 -24 -66 -5 0 0 O O O O O O O O O
-8§ 41 -15 -18 -24 -8 -8 0 1 0O O O O O OO O O
-8 -15 -9 -29 -13 48 -1 0 0 O O O O O O O O O
0 0 0 0 0 10 0o 0 0 00O0OOOOOO-10
L O 0 0 0 0 7 0 1 -1 0 00O O0OOOTO O 04

The pencil sSF — G has p = 11 distinct finite eigenvalues A;, = 1.816 +j2.679, A3 = —1.130, A45 = 1.840 + j0.996,
A67 = —0.0109 +j1.751, hg9 = —0.044 & j1.940, h19.1; = 0.0211 £ j2.2004, and the infinite eigenvalue A, = oo with
algebraic multiplicity § = 7. For fractional order y = 0.6, we have that y = min{0.6,0.4} = 0.4 in (16), and thus, the
closed-loop system is stable if the arguments ¢; = Arg():i) of the finite eigenvalues X,-, i=1,2,..., 11, satisfy:

] > % —0.628 rad .

The finite eigenvalues of sF — G are illustrated in Fig. 2. The system is stable, since all eigenvalues lie in the region
given in . Finally, the general analytical solution of the system requires to calculate the matrices Qp, J, (see (15) ). These
matrices are provided in Appendix A.

3.2. Numerical example 2

Power system models for rotor angle and voltage transient stability studies are formulated as a set of non-linear
differential algebraic equations. Transient stability refers to the ability of a power system to maintain synchronism and
restore a stationary condition after a perturbation.

The semi-implicit formulation of a power system model is as follows [39]:

-]
R 0|0 |gx,y)|’

where f, g are the differential, algebraic equations, respectively; x € R", y € R™ are the state and algebraic variables,
respectively; and T, R, are the left handside coefficient matrices. If the examined perturbations are sufficiently small,
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sat 1 2 sa2

SO =

L3

Fig. 3. 3-bus power system scheme.

Table 1
3-bus power system. Branch data with power base S, = 100 MVA.
Branch From (i) To (k) Rik Xik Bik
# # # [pu(£2)] [pu(£2)] [pu(271)]
1 1 2 0.022 0.220 0.385
2 1 3 0.010 0.110 0.385
3 2 3 0.011 0.110 0.385

aper unit system (pu); in the analysis of power systems, quantities are often expressed as fractions of defined base
units.

Table 2

3-bus power system. Data of the synchronous generators.

Generator # 1 2

Sn [MVA] 1800.0 1800.0

Vi [pu(kV)] 230.0 230.0

Model dyn. order 5 6

H [MWs/MVA] 6.500 6.175

Ty Tgo 8] 8.00, 0.03 8.00, 0.03

Tl;o, Té:: [s] 0.00, 0.03 0.40, 0.05

Xa, X5, X{ [pu($2)] 1.80, 0.30, 0.25 1.80, 0.30, 0.25
Xq, Xgo Xq [pu(£2)] 1.70, 0.55, 0.25 1.70, 0.55, 0.25
X [pu(£2)] 0.20 0.20

Ry [pu(£2)] 0.0025 0.0025

stability can be assessed by considering the linearized power system model around a stationary point (xg, ¥o). This system
can be described as:

TAX = fAx + f, Ay
RAX = gy Ax + g, Ay ,

where f, f;, g gy are Jacobian matrices, and Ax = x — X9, Ay =y — yo. Equivalently, we can write:
EnY' =ApY,

Ax T O K5

where Y =

[Ay e T

The power system considered in this example is shown in Fig. 3. It consists of two synchronous generators (SG), each
of which is equipped with an automatic voltage regulator (AVR) that stabilizes the terminal voltage by controlling the
current in the rotor field winding; three electric power transmission lines, which operate at nominal voltage 230 kV and
nominal frequency 60 Hz; and three constant power loads. The models of the components used in this example can be
found in many power system textbooks, e.g. in [40]. Table 1 shows the transmission line parameters. The parameters of
the SG and AVR models are shown in Tables 2 and 3, respectively.

The matrices T, R, f, f;, & and g,, which define the linearized system around the examined stationary point, are given
in Appendix B. This system is stable, since the real parts of all finite eigenvalues of the pencil sE,, — A,r are negative. In
particular, the sE,, — A, has p = 19 finite eigenvalues and the infinite eigenvalue with algebraic multiplicity ¢ = 32. The
rightmost eigenvalues of sE,; — A, are shown in Fig. 4. The dominant complex pair of eigenvalues is —0.181 & j4.521
and represents the electro-mechanical oscillatory mode of the system. This can be found for example by carrying modal
participation analysis of the system.

A complex eigenvalue A; can be written as A; = |A;|(cos ¢; + jsin ¢;). Then, the damping ratio ¢; = — cos ¢; measures
how the oscillation decays after a perturbation. In a first order system, zero damping defines the border between stability
and instability and corresponds to ¢, = 7 rad. The power system is said to be well-damped, if for all oscillatory modes,
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Table 3

3-bus power system. Data of the synchronous generator AVRs.

Real part

Generator # 1 2
Model dyn. order 4 4
Ky, Ke, K¢ 40.0, 1.00, 0.001 40.0, 1.00, 0.001
Ty, Te, Tt 0.055, 0.36, 1.0 0.055, 0.30, 1.0
r 0.05 0.05
Ae, Be 0.0056, 1.075 0.0056, 1.075
v,y —5.0,5.0 -5.0,5.0
8 —
¢=5%
4l ‘e
° K
= °
g 2 3
i’ .
< [ R L 0056609500 E550060865008665530056000008600060553505600
=
"50 .
£ 2 ° !
- B
L[] .
4| k
,'.
76 L I-l
—8 I I L |
-2.0 -1.5 —-1.0 —0.5 0.0 0.5 1.0 1.5 2.0

Fig. 4. 3-bus power system. Rightmost eigenvalues of sE,, — Ap,.

¢ = 5%. As it can be seen, the dominant pair is not well damped.

A standard solution for suppressing a not well damped electro-mechanical oscillation in power systems is the
installation of a power system stabilizer (PSS). In this example, we study a fractional order PSS (FOPSS). The FOPSS input is
assumed to be the rotor speed of synchronous generator SG1, while the control output is considered to be part of the SG1
AVR reference voltage [40]. That said, the open-loop system takes the form of (2), (3), where: By, € R>*1, C,, € RTT;
B, defines the control placement (SG1 AVR reference), and its elements are B, (i) = 0, if i # 50, By.(i) = 1, if i = 50; G
defines the measured variable (SG1 rotor speed), and its elements are C,-(i) = 0, if i # 2, Cp,(i) = 1, if i = 2; and Dy, = 0.

The block diagram of the FOPSS is shown in Fig. 5. It consists of a washout filter and three fractional order lead-lag
blocks. The FOPSS can be written in the form of (4), where:

A =

Ty
T,

l [eNeNoNoNoNoe]

OO O OO OO =

o

[} e e N NNl

OO0 O0OOXR~,O

0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0 O
0 0 0
0 0 0
-1 0 0
-1 1 0
01 -1
0 0 -1
0 0 0
0 0 0

o

[eNeNeNoNoNoNe]

O= —_ OO0 O0O0OO0O

0

[ e oMo NNl

—_ —_ 000000

—_— OO0 00000

OO O OO OOO0O
[eNeNoNeNelNoNe ol

OO O OO OO—=

cocoocoldS oo

[eNeNoNeNolNolNoloel

coifdidococoo

C

0 0 07
0 00
0 00
0 00
0 0 0 |
0 00
0 T 0
0T 0
_O_T
0
0
o
“lo
0
0
L 1
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The parameters of the FOPSS are summarized in Table 4. The closed-loop system is calculated according to (5). Finally,
we compute the eigenvalues of the pencil sF — G, where F, G are defined according to (6). The pencil sF — G has p = 43
distinct finite eigenvalues and the infinite eigenvalue with algebraic multiplicity § = 77. For y = 0.8, we have that
7 = min{0.8,0.2} = 0.2 in (16), and thus, the closed-loop system is stable if the arguments ¢; = Arg(A;) of the finite
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Table 4
FOPSS parameters.

T,=14s, T =T3=T5 =0.5056 5, T, =Ty = Tg = 0.1007 s, K, = 20, y = 0.8

13 Tws Tis7 +1 Tzs7 41 Tss? +1 U
— Kw > > - ——
Tws+1 Tos? +1 Tys? +1 Tes? +1
Fig. 5. FOPSS block diagram.
8 ;
6 H 1
] [} . o o
4t R ,
z .
= 2r e e o : ° ° . C=£:95:<;S_J_r_5%j
= e
R 0 S PPN $ oorei T
g o
oD o o @ ¢ o ° o T
E _2 - , .
4l ) ,
[} L[] : o o
°
6| . i
s ‘ s ‘ ‘
—2 -1 0 1 2 3
Real part

Fig. 6. 3-bus power system. Rightmost eigenvalues of sF — G. Shaded is the region of instability |¢| < 0.314 rad.

eigenvalues A;, i=1,2,.

.., 11, satisfy:

] > y% =2 _0314rad.

10

The rightmost eigenvalues of sF — G are shown in Fig. 6. The border between stability and instability is ¢, = 0.314 rad,
and this corresponds to a ¢, = —cos¢, = —0.95. We say that the system is well-damped, if for all eigenvalues it

Imaginary part

220 —-1.5 -1.0 —0.5 0.0 0.5 1.0 1.5 2.0
Real part

Fig. 7. 3-bus power system. Rightmost eigenvalues of sl?',,, —Apr.
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is & > —cos¢, + 0.05, that in our case corresponds to ¢ = —0.9. In Fig. 6, we have drawn the lines that define
¢ = —cos¢m, + 0.05 = —0.9. As it can be seen, the system is well-damped.

Finally, we provide a simple test on the robustness of the FOPSS. We consider that the transmission line that connects
buses 1 and 3 is out of service. In the new stationary point, let E"pr, Apr, be the matrices that describe the system without
the FOPSS. The rightmost eigenvalues of sEpr - Apr are shown in Fig. 7. The stability of the system with inclusion of the
FOPSS can be studied by calculating the new matrices F, G. The rightmost eigenvalues of sF — G are shown in Fig. 8. As
it can be seen, the 3-bus system with the line 1-3 out of service is unstable if the FOPSS is not installed. With the FOPSS,
the system is stable and well-damped.

4. Conclusions

This article considers the singular linear system of first order (2), and the output (3). We introduce a generalized
fractional order feedback controller of (C) type (4), and study the closed loop system (6). The results provide insight
on the existence and uniqueness of solutions, as well as on the stability of systems with inclusion of fractional order
controllers.

A further extension of this paper is to study practical implementation aspects of fractional order controllers for
electrical power system applications, and also provide results on the stability analysis of such dynamic systems with
inclusion of fractional order derivatives. We also aim to provide a method to measure the participation of system
eigenvalues in system states, and vice versa, for singular linear systems of FDEs.
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Appendices

This section provides the data used in the numerical examples. In particular, Appendix A includes the data of numerical
example 1 and Appendix B includes the data of numerical example 2.

Appendix A
[ 0.07 0.07 —0.26  0.14—-0.22i 0.14+0.22i —0.15-0.37i —0.15+0.37i  0.09 4 0.01i 0.09-0.01i —0.07+0.24i —0.07 —0.24i ]
—0.01 —0.01 0.02 —0.02 - 0.01i —0.02+ 0.01i 0.04 + 0.07i 0.04 — 0.07i —0.02+0.04i —0.02 — 0.04i —0.03i 0.03i
0 0 —0.02 0.01i —0.01i —0.03i 0.03i 0.01i —0.01i 0.02i —0.02i
0 0 —0.02 0.01+ 0.03i 0.01 — 0.03i 0.01+40.23i 0.01 —0.23i 0.03 — 0.03i 0.03 4 0.03i 0.03i —0.03i
0.01 0.01 0.03 0.01+0.07i 0.01 — 0.07i 0 0 0.06i —0.06i —0.02+0.02i —0.02 —0.02i
—0.02 —0.02 0.1 —0.06 +0.04i —0.06—0.04i 0.04 —0.02i 0.04+0.02i —0.04+0.01i —0.04—-0.01i 0.03—-0.02i 0.03 +0.02i
—0.02 —0.02 0.02 —0.02+0.08i —0.02 — 0.08i 0.03 + 0.05i 0.03 — 0.05i —0.03+0.01i —0.03—0.01i 0.01—0.1i 0.01+0.1i
—0.05+0.06i —0.05—-0.06i —0.89 0.29+ 0.62i 0.29—-0.62i —0.12—-0.24i -0.12+0.24i 0.03+0.21i 0.03 —0.21i —0.1—0.16i —0.1+0.16i
—0.22+0.04i —-0.22-0.04i -0.19 —0.11+0.89i —0.11—0.89i 0.18 — 0.39i 0.18 + 0.39i —0.26 +0.26i —0.26 — 0.26i 0.14—0.31i 0.14+0.31i
@= 0.12 + 0.18i 0.12 — 0.18i 0.29 0.24 4 0.1i 0.24—0.1i 0.65 — 0.26i 0.65 + 0.26i —0.02+0.17i —0.02—-0.17i —0.53—-0.16i —0.53+ 0.16i
—0.01-0.02i —0.0140.02i —0.02 0.01—0.03i 0.01+0.03i —0.13+0.07i —0.13—-0.07i —0.09—0.04i —0.09 + 0.04i 0.06 0.06
—0.01-0.01i —0.01+0.01i 0.02 —0.01 —0.01 0.06 0.06 —0.01—-0.01i —0.01+0.01i —0.04+0.01i —0.04—0.01i
0.01i —0.01i 0.02 —0.03+0.02i —-0.03—-0.02i —0.4+0.01i —0.4—-0.01i 0.06 + 0.05i 0.06 — 0.05i —0.07—0.01i —0.07 4 0.01i
0.01+ 0.02i 0.01 — 0.02i —0.04 —0.07+0.02i —0.07 —0.02i —0.01 —0.01 —0.12+0.01i —0.12—-0.01i —0.05—0.05i —0.05+ 0.05i
—0.04 -0.07i —0.04+0.07i —-0.11 —0.05-0.05i —0.05+ 0.05i 0.04 + 0.08i 0.04 — 0.08i —0.02 - 0.08i —0.02 + 0.08i 0.05 + 0.08i 0.05 — 0.08i
—0.04-0.05i —0.04+40.05i —0.02 —0.09—-0.01i —0.09+0.01i —0.09+40.05i —0.09—0.05i —0.03—-0.05i —0.03+0.05i 0.22+ 0.02i 0.22 —0.02i
—0.24—-0.03i —0.24+0.03i 1 —0.56 + 0.4i —0.56 — 0.4i 0.43 —0.21i 0.43 4 0.21i —0.41+0.07i —0.41—0.07i 0.35 —0.22i 0.35 4 0.22i

| —0.49-051i -049+0.51i 021 —0.91+0.06i —0.91—0.06i 0.68+0.32i 0.68 —0.32i —0.52—-0.48i —0.52+0.48i 0.69+0.31i 0.69-0.31i |
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