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a b s t r a c t

In this article we consider a class of singular linear systems of first order, and introduce
a generalized fractional order feedback controller of Caputo type. The closed loop system
in question is a singular system of differential equations having both first, and fractional
order derivatives. We provide a comprehensive theory for the existence and uniqueness
of solutions, as well as for the stability of the system with inclusion of the fractional
order controller. An example of a singular system with a fractional order proportional
integral controller, as well as an example on a 3-bus power system with inclusion of a
fractional order damping controller, is given to illustrate our theory.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Singular linear systems of differential & difference equations appear in control theory [1], circuit theory [2], and
in modeling (dynamics) of electrical power systems [3]. Other interesting applications of a singular system are the
constrained mechanical & robotic system described in [4], and in finance, the input–output Leontief model including
its several important extensions [5].

In the last decade, many authors have studied problems of differential equations of fractional order, and have derived
interesting results on different types of problems for given initial or boundary conditions, see [6–16]. Research has
also been developed for other type of fractional operators such as the fractional nabla & delta operator applied to
difference equations, see [12,17–24]. Focus has also been given on the mathematical modeling of many phenomena by
using fractional operators. The theory of fractional differential equations (FDEs) is a promising tool for applications in
physics [25], biology [26], and control theory, see [16,27–33]. Fractional-order operators are not just a generalization of
the classical integer-order operators. Because of the way they are defined, more elaborated techniques are required for
qualitative studies. In many practical cases the existing techniques are not enough.

Despite several studies, there are still parts missing for a complete and coherent theory of systems of FDEs in order
to use this type of systems as a tool in the applied sciences in a similar way to the classical case. In addition, generalized
FDEs and cases such as singularities of certain systems of FDEs have been mostly avoided in the framework of fractional
calculus. Hence, explicit and easily testable methods are required in order to solve generalized systems of FDEs, so that
applied researchers can redesign their models using fractional operators where this is appropriate.

The following notation is adopted throughout the paper. First order derivatives are indicated as Y ′(x) =
d
dxY (x); L

denotes the Laplace transform [7]; and 0ij indicates the zero matrix of i rows and j columns. Let Bn1 ∈ Cn1×n1 , Bn2 ∈ Cn2×n2 ,
. . . , Bnr ∈ Cnr×nr . Then, the direct sum Bn1 ⊕Bn2 ⊕· · ·⊕Bnr denotes the block diagonal matrix blockdiag

(
Bn1 , Bn1 , . . . , Bnr

)
.
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efinition 1.1 (See [7]). Let Y : [0,+∞) → Rm×1, t → Y , denote a column of continuous and differentiable functions.
hen, the Caputo (C) fractional derivative of order a, 0 < a < 1, is defined by:

Y (a)
C (t) := Y (a)(t) =

1
Γ (1 − a)

∫ t

0

[
(t − x)−aY ′(x)

]
dx . (1)

In this article, we consider the following singular system:

EprX ′

pr = AprXpr + BprU , (2)

where Epr , Apr ∈ Cñ×n can be non-square, or square and singular, Xpr ∈ Cn×1, Bpr ∈ Cñ×p̃, U ∈ Cp̃×1. Let the vector of the
system output ξ ∈ Cq̃×1, be:

ξ = CprXpr + DprU , (3)

where Cpr ∈ Cq̃×n, Dpr ∈ Cq̃×p̃. Then, a fractional order controller for the system (2)–(3), can be described by a set of
fractional differential and algebraic equations as follows:

Ec1Xc
′
+ Ec2Xc

(γ )
= AcXc + Bcξ ,

U = CcXc + Dcξ ,
(4)

where γ is the controller’s fractional order derivative; Xc ∈ Rν , is the vector of the controller states; Ec, Ac ∈ Cν̃×ν ,
Bc ∈ Cν̃×q̃, Cc ∈ Cp̃×ν , Dc ∈ Cp̃×q̃. Combining (2), (3), and (4) yields the closed-loop system representation. In matrix form:[ Epr 0ñ,ν 0ñ,p̃

0ν̃,n Ec1 0ν̃,p̃
0p̃,n 0p̃,ν 0p̃,p̃

][ Xpr
Xc
U

]′

+

[ 0ñ,n 0ñ,ν 0ñ,p̃
0ν̃,n Ec2 0ν̃,p̃
0p̃,n 0p̃,ν 0p̃,p̃

][ Xpr
Xc
U

](γ )

=

[ Apr 0ñ,ν Bpr
BcCpr Ac BcDpr
DcCpr Cc DcDpr − Ip̃

][ Xpr
Xc
U

]
,

or, equivalently,

EX ′
+ ẼX (γ )

= AX , (5)

where

E =

[ Epr 0ñ,ν 0ñ,p̃
0ν̃,n Ec1 0ν̃,p̃
0p̃,n 0p̃,ν 0p̃,p̃

]
, X =

[ Xpr
Xc
U

]
,

and

Ẽ =

[ 0ñ,n 0ñ,ν 0ñ,p̃
0ν̃,n Ec2 0ν̃,p̃
0p̃,n 0p̃,ν 0p̃,p̃

]
, A =

[ Apr 0ñ,ν Bpr
BcCpr Ac BcDpr
DcCpr Cc DcDpr − Ip̃

]
.

The article is organized as follows: in Section 2 we use the (C) fractional derivative as defined in (1), and study singular
linear system of FDEs (5). We study the existence and uniqueness of solutions and provide two different types of formulas
for the case that there exist solutions. In addition, we study stability properties, and finally, in Section 3 we provide
numerical examples to justify our theory.

2. Main results

In this section, we present our main results. First, we provide the following property of the (C) fractional derivative
[13]: Let φ(t), φ(t) ∈ C1

[0, T ]
n×1 for some T > 0. Then, [φ(α)(t)](β) = [φ(β)(t)](α) = φ(α+β)(t), where α, β ∈ R+, and

α + β ≤ 1. We rewrite (5) as:

EX (γ+β)
+ ẼX (γ )

= AX ,

where γ + β = 1. We use the notation:

ψ1 = X , ψ2 = X (γ ) .

Then, we obtain ψ (γ )
1 = X (γ )

= ψ2, and Eψ (β)
2 = EX ′

= −Ẽψ2 + Aψ1. Or, equivalently:[
Iρ̃,ρ̂ 0ρ̃,ρ̂
0 E

][
ψ

(γ )
1
(β)

]
=

[
0ρ̃,ρ̂ Iρ̃,ρ̂

˜

][
ψ1
ψ

]
,

ρ̃,ρ̂ ψ2 A −E 2
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where ρ̃ = ñ + ν̃ + p̃, ρ̂ = n + ν + p̃, and Iρ̃,ρ̂ is a ρ̃ × ρ̂ matrix with ones in its diagonal and zeros in the rest entries.
quivalently, we have:

FY∆(t) = GY (t) , (6)

here

F =

[
Iρ̃,ρ̂ 0ρ̃,ρ̂
0ρ̃,ρ̂ E

]
, Y∆ =

[
ψ

(γ )
1
ψ

(β)
2

]
,

and

G =

[
0ρ̃,ρ̂ Iρ̃,ρ̂
A −Ẽ

]
, Y =

[
ψ1
ψ2

]
,

where F ,G ∈ Cr×m, Y : [0,+∞) → Cm×1, and β, γ ∈ (0, 1), where, for simplicity, r = 2ρ̃ = r and m = 2ρ̂ = m. The
matrices F , G can be non-square (r ̸= m) or square (r = m) with F singular (det(F)=0). Note that system (6) is equivalent
to the closed loop system (5).

Definition 2.1. Assume F ,G ∈ Cr×m, β, γ ∈ (0, 1), an arbitrary s ∈ C, and an inverse matrix function

z := z(s) = sγ Iρ̃ ⊕ sβ Iρ̃ =

[
sγ Iρ̃ 0ρ̃,ρ̃
0ρ̃,ρ̃ sβ Iρ̃

]
,

with z ∈ Cr×m. Then, the matrix pencil zF − G is called:

1. Regular if r = m, i.e. F , G are square matrices, and det(zF − G) ̸≡ 0;
2. Singular if

• r ̸= m, i.e. F , G are non-square matrices; or
• r = m, i.e. F , G are square matrices, and det(zF − G) ≡ 0.

Remark 2.1. Given F ,G ∈ Cr×m, β, γ ∈ (0, 1), an arbitrary s ∈ C and an inverse function z = z(s) ∈ C, if the pencil zF −G
is:

(a) regular, since det(zF−G) ̸≡ 0, there exists a matrix polynomial Θ(s) : C → Rm×m (which can be computed via the
Gauss–Jordan elimination method, see [34]) such that:

Θ(s)(zF − G) = Λ(s) , (7)

where Λ(s) : C → Rm×m is a diagonal matrix polynomial with non-zero elements;
(b) singular and r > m, there exists a matrix polynomial Θ(s) : C → Rr×r (which can be computed via the

Gauss–Jordan elimination method) such that:

Θ(s)(zF − G) =

[
Λ(s)
0r1,m

]
, with Θ(s) =

[
Θ1(s)
Θ2(s)

]
, (8)

where Λ(s) : C → Rm1×m, with m1 + r1 = r , is a matrix such that if [lij]
1≤j≤m
1≤i≤m1

are its elements, for i = j all elements
are non-zero and for i ̸= j all elements are zero and Θ1(s) ∈ Rm1×r , Θ2(s) ∈ Rr1×r .

We now study the existence of solutions of system (6). We state the following Theorem:

Theorem 2.1. Consider the system of FDEs (6), and let

w := w(s) = sγ−1Iρ̃ ⊕ sβ−1Iρ̃ =

[
sγ−1Iρ̃ 0ρ̃,ρ̃
0ρ̃,ρ̃ sβ−1Iρ̃

]
.

Then, there exist solutions for (6) if and only if either of the two following conditions is satisfied:

(a) the pencil of the system is regular; in this case, the general solution is given by:

Y (t) = Φ(t)C , (9)

where Φ(t) = L−1
{Λ−1(s)Θ(s)wF}, Λ(s), Θ(s) are defined in (7) and C ∈ Rm×1 is an unknown constant vector; or

(b) the pencil of the system is singular with r > m and:

Θ2(s)F = 0m1,1, and m1 = m. (10)

In this case, the general solution is given by:

Y (t) = Ψ (t)C , (11)
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where Ψ (t) = L−1
{Λ−1(s)Θ1(s)wF}, Λ(s), Θ(s), Θ1(s), Θ2(s) are defined in (8), C ∈ Rm×1 is an unknown constant

vector.

roof. Let L{Y (t)} = Z(s), be the Laplace transform of Y (t). Using the fractional derivative as defined in (1), by applying
he Laplace transform L into (6), see [7,11], we get:

L{FY∆(t)} = L{GY (t)} .

ote that

Y∆ =

[
dγ
dtγ Iρ̂ 0ρ̂,ρ̂
0ρ̂,ρ̂ dβ

dtβ Iρ̂

]
Y (t) ,

and hence

FY∆ =

[
Iρ̃,ρ̂ 0ρ̃,ρ̂
0ρ̃,ρ̂ E

][
dγ
dtγ Iρ̂ 0ρ̂,ρ̂
0ρ̂,ρ̂ dβ

dtβ Iρ̂

]
Y (t) ,

or, equivalently,

FY∆ =

[
dγ
dtγ Iρ̃,ρ̂ 0ρ̃,ρ̂
0ρ̃,ρ̂ dβ

dtβ E

][
ψ1
ψ2

]
=

[
dγ ψ1
dtγ 0ρ̃,ρ̂
0ρ̃,ρ̂ E dβψ2

dtβ

]
.

hus, L{FY∆(t)} = FL{Y∆(t)}. Furthermore:

FL
{[

ψ
(γ )
1 (t)
ψ

(β)
2 (t)

]}
= GL{Y (t)} ,

r, equivalently,

F
[

sγL{ψ1(t)} − sγ−1ψ1(0)
sβL{ψ2(t)} − sβ−1ψ2(0)

]
= GL{Y (t)} ,

or, equivalently,

F
[

sγL{ψ1(t)}
sβL{ψ2(t)}

]
− F

[
sγ−1ψ1(0)
sβ−1ψ2(0)

]
= GL{Y (t)} ,

or, equivalently,

F
[

sγ Iρ̂ 0ρ̂,ρ̂
0ρ̂,ρ̂ sβ Iρ̂

][
L{ψ1(t)}
L{ψ2(t)}

]
− F

[
sγ−1Iρ̂ 0ρ̂,ρ̂
0ρ̂,ρ̂ sβ−1Iρ̂

][
ψ1(0)
ψ2(0)

]
= GL{Y (t)} ,

or, equivalently,

z(s)FL{Y (t)} − w(s)FY (0) = GL{Y (t)} ,

or, equivalently,

zFZ(s) − FwY (0) = GZ(s) ,

or, equivalently,

(zF − G)Z(s) = wFY0 .

Where Y0 = Y (0), i.e. the initial condition of (6). Since we assume that Y0 is unknown we can use an unknown constant
vector C ∈ Cm×1 and give to the above expression the following form:

(zF − G)Z(s) = wFC . (12)

There are two cases. The first is (a) r = m and det(zF − G) to be equal to a fractional polynomial with order less than
β + γ (regular pencil). The second case is (b) r ̸= m or r = m and det(zF − G) ≡ 0, ∀ arbitrary s ∈ C (singular pencil).

In the case of (a), since the pencil is assumed regular and det(zF − G) ̸≡ 0, there exists a matrix polynomial
Θ(s) : C → Rm×m (which can be computed via the Gauss–Jordan elimination method, see [34]) such that:

Θ(s)(zF − G) = Λ(s) ,

where Λ(s) : C → Rm×m is a diagonal matrix polynomial with non-zero elements in its diagonal. Then, by multiplying
(12) with Θ(s), we get:

Θ(s)(zF − G)Z(s) = wΘ(s)FC ,
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or, equivalently,

Λ(s)Z(s) = wΘ(s)FC ,

or, equivalently,

Z(s) = wΛ−1(s)Θ(s)FC .

The inverse Laplace transform of the matrixwΛ−1(s)Θ(s)F = w(zF−G)−1F always exists because its elements are fractions
of fractional polynomials with the order of the polynomial in the denominator always being higher than the order of the
polynomial in the numerator. Let L−1

{wΛ−1(s)Θ(s)F} = Φ(t). Then, Y (t) is given by (9).
In the case of (b), if r < m there are at least m − r unknown functions and m equations. Hence Z(s) in system (12)

annot be defined uniquely. If r > m, there exists a matrix polynomial Θ(s) : C → Rr×r (which can be computed via the
auss–Jordan elimination method), such that:

Θ(s)(zF − G) =

[
Λ(s)
0r1,m

]
,

here Λ(s) : C → Rm1×m, with m1 + r1 = r , is a matrix such that if [lij]
1≤j≤m
1≤i≤m1

are its elements, for i = j all elements are
on-zero and for i ̸= j all elements are zero. Let:

Θ(s) =

[
Θ1(s)
Θ2(s)

]
,

here Θ1(s) ∈ Rm1×r , Θ2(s) ∈ Rr1×r . Then, system (12) has a unique solution if and only if (10) holds. In any other case,
e have more unknown functions than equations or no solutions. If (10) holds, then:

Θ(s)(zF − G) =

[
Λ(s)
0r1,m

]
,

nd we have

Θ(s)(zF − G)Z(s) = Θ(s)wFC ,

r, equivalently,

Λ(s)Z(s) = Θ1(s)wFC ,

r, equivalently,

Z(s) = Λ−1(s)Θ1(s)wFC .

he inverse Laplace transform of Λ−1(s)Θ1(s)wF always exists because it is a matrix with elements fractions of fractional
olynomials and with the order of the polynomial in the denominator always being higher than the order of the
olynomial in the numerator. Let L−1

{Λ−1(s)Θ1(s)wF} = Ψ (t). Then, Y (t) is given (11). If r = m, there exists a matrix
polynomial Θ(s) : C → Rr×r (which can be computed via the Gauss–Jordan elimination method) such that:

Θ(s)(zF − G) = Λ(s) ⊕ 0r2,m2 ,

here Λ(s) : C → Rr1×m1 with r1 ≤ m1 (because we apply Gauss–Jordan elimination method at the rows). All elements of
(s) are zero except the ones in the diagonal with all non-zero elements. Also, r1 + r2 = m1 +m2 = m. Then, system (12)

could have solutions if and only if r2 = m2 = 0, i.e. r1 = m1 = m; In any other case we have more unknown functions
than equations or no solutions. But since we are in the case where r = m and the pencil is singular, i.e. det(zF − G) ≡ 0,
this assumption can never hold. To sum up, there exist solutions for the system if the pencil is regular or singular with
r > m and Λ(s) m × m and Θ2(s)F = 0m−r,1. The proof is complete.

Having identified the conditions under which there exist solutions for singular systems in the form of (6), we can now
present the following Remark:

Remark 2.2. For the (C) fractional derivative, if there exist solutions for system (6), then in the case that the pencil of the
system is regular, the general solution is given by (9). In the case that the pencil of the system is singular with r > m
and (10) holds, the general solution is given by (11). In both cases, C is an unknown constant vector related to the initial
conditions of the system since we used the Laplace transform. Note that:

(a) There are two types of initial conditions: consistent, which lead the system to have a unique solution; and
non-consistent, which, if given, lead the system to have infinite solutions.

(b) It is not guaranteed that for given initial conditions a singular system of FDEs will have a unique solution. If the
given initial conditions are consistent and there exist solutions for (6), we replace C = Y0 in the formulas of the
general solutions (9) and (11). However, if the given initial conditions are non-consistent but there exist solutions

for (6), then the general solutions (9) and (11) hold for t > 0 and the system is impulsive.
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(c) The next subsection provides a criterion on how to identify if the given initial conditions are consistent or non-
consistent. For the case that the initial conditions are consistent, the matrix functions Φ(t) and Ψ (t) can have
elements defined for t > 0 and the columns Φ(t)Y0 and Ψ (t)Y0 have all their elements always defined for t ≥ 0.

Based on Theorem 2.1 and the assumptions for existence of solutions of system (6), we can provide additional formulas
by using matrix pencil theory.

From Theorem 2.1, there exist solutions for system (6) if the pencil is either regular, or singular with r > m and (10)
olds. Hence, we focus on the case that r ≥ m. If (6) has a regular pencil, then sF − G is also a regular pencil. Hence and
ecause of the structure of F there exist invariants of the following type:

• µ finite eigenvalues of algebraic multiplicity pi, i = 1, 2, . . . , µ;
• an infinite eigenvalue of algebraic multiplicity q,

here
∑µ

i=1 pi = p, p + q = m. There exist non-singular matrices P , Q ∈ Cm×m such that:

PFQ = Ip ⊕ Hq ,

PGQ = Jp ⊕ Iq ,
(13)

here Jp∈ Cp×p, Hq∈ Cq×q appropriate matrices with Hq a nilpotent matrix with index q∗, constructed by using the
lgebraic multiplicity of the infinite eigenvalue, Jp is a Jordan matrix, constructed by the finite eigenvalues of the pencil
nd their algebraic multiplicity. Let

P =

⎡⎢⎣ P1,γ
P1,β
P2,γ
P2,β

⎤⎥⎦ , Q =
[

Qp,γ Qp,β Qq,γ Qq,β
]
,

here P1,γ ∈ Cp̂×m, P1,β ∈ Cp̄×m, P2,γ ∈ Cq̃×m, P2,β ∈ Cq̄×m, and Qp,γ ∈ Cm×p̂, Qp,β ∈ Cm×p̄, Qq,γ ∈ Cm×q̂, Qq,β ∈ Cm×q̄.
Equivalently, if we set:

P1 =

[
P1,γ
P1,β

]
, Qp =

[
Qp,γ Qp,β

]
,

P2 =

[
P2,γ
P2,β

]
, Qq =

[
Qq,γ Qq,β

]
,

we have

P =

[
P1
P2

]
, Q =

[
Qp Qq

]
. (14)

with P1 ∈ Cp×m, P2 ∈ Cq×m, and Qp ∈ Cm×p, Qq ∈ Cm×q. By using this notation, and Ip = Ip̂ ⊕ Ip̄, Jp = Jp̂ ⊕ Jp̄, (13) can be
written in the following form:

PFQ = Ip̂ ⊕ Ip̄ ⊕ Hq̂ ⊕ Hq̄ ,

PGQ = Jp̂ ⊕ Jp̄ ⊕ Iq̂ ⊕ Iq̄ .

We provide the following theorem:

Theorem 2.2. If there exist solutions for the system of FDEs (6), then:

(a) Using the spectrum of the pencil sF − G, the general solution of (6) is given by:

Y (t) = Qp

∞∑
k=0

[
tγ k

Γ (kγ+1) Ip̂ 0p̂,p̂

0p̄,p̄
tβk

Γ (kβ+1) Ip̄

]
JkpC , (15)

where Jp ∈ Cp×p, is a Jordan matrix constructed by the finite eigenvalues of the pencil sF − G, and their algebraic
multiplicity, while Qp ∈ Cm×p is a matrix constructed by the linear independent eigenvectors related to the finite
eigenvalues of the pencil sF − G, and C ∈ Cp×1 is a constant vector.

(b) System (6) is asymptotically stable if all eigenvalues λ of the pencil sF − G satisfy:

|Arg(λ)| > γ̃
π

2
(rad) , (16)

where γ̃ = min {γ , 1 − γ }.

roof. For (a), we first observe that:

FY∆ = F
[
ψ

(γ )
1
ψ

(β)

]
= F

[
dγ
dtγ Iρ̂ 0ρ̂,ρ̂
0 dβ I

][
ψ1
ψ2

]
=

[
dγ
dtγ Iρ̃ 0ρ̃,ρ̃
0 dβ I

]
FY .
2 ρ̂,ρ̂ dtβ ρ̂ ρ̃,ρ̃ dtβ ρ̃
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By using this notation we can write (6) in the form:[
dγ
dtγ Iρ̃ 0ρ̃,ρ̃
0ρ̃,ρ̃ dβ

dtβ Iρ̃

]
FY = GY ,

and by using the transformation Y (t) = QZ(t) we obtain:[
dγ
dtγ Iρ̃ 0ρ̃,ρ̃
0ρ̃,ρ̃ dβ

dtβ Iρ̃

]
FQZ = GQZ ,

whereby, multiplying by P and using (13) and (14), we get:

(Ip̂ ⊕ Ip̄ ⊕ Hq̂ ⊕ Hq̄)

⎡⎢⎢⎢⎢⎢⎣
Z (γ )
p̂ (t)

Z (β)
p̄ (t)

Z (γ )
q̂ (t)

Z (β)
q̄ (t)

⎤⎥⎥⎥⎥⎥⎦ = (Jp̂ ⊕ Jp̄ ⊕ Iq̂ ⊕ Iq̄)

⎡⎢⎢⎣
Zp̂(t)
Zp̄(t)
Zq̂(t)
Zq̄(t)

⎤⎥⎥⎦ ,
here

Z(t) =

⎡⎢⎢⎣
Zp̂(t)
Zp̄(t)
Zq̂(t)
Zq̄(t)

⎤⎥⎥⎦ ,
ith Zp̂(t) ∈ Cp̂×1, Zp̄(t) ∈ Cp̄×1, Zq̂(t) ∈ Cq̂×1, Zq̄(t) ∈ Cq̄×1. From the above expressions we arrive at the subsystems:

Z (γ )
p̂ (t) = Jp̂Zp̂(t) ;

Z (β)
p̄ (t) = Jp̄Zp̄(t) ,

(17)

nd

Hq̂Z
(γ )
q̂ (t) = Zq̂(t) ;

Hq̄Z
(β)
q̄ (t) = Zq̄(t) .

(18)

y applying the Laplace transform L into (17), we get:

L{Z (γ )
p̂ (t)} = Jp̂L{Zp̂(t)} ;

L{Z (β)
p̄ (t)} = Jp̄L{Zp̄(t)} ,

et L{Zp̂(t)} = Wp̂(s), L{Zp̄(t)} = Wp̄(s), and Zp̂0 = Zp̂(0), Zp̄0 = Zp̄(0), i.e. the initial condition of (17). Since we assume that
p̂(0), Zp̄(0) are unknown, we set Zp̂(0) = C1, Zp̄(0) = C2, where C1, C2 unknown columns, and give to the above expression
he following form:

(sγ Ip̂ − Jp̂)Wp̂(s) = sγ−1C1 ;

(sβ Ip̄ − Jp̄)Wp̄(s) = sβ−1C2 ,

r, equivalently,

Wp̂(s) = sγ−1(sγ Ip̂ − Jp̂)−1C1 ;

Wp̄(s) = sβ−1(sβ Ip̄ − Jp̄)−1C2 .

y taking into account that (sγ Ip̂ − Jp̂)−1
=

∑
∞

k=0 s
−(k+1)γ Jkp̂ , and (sβ Ip̄ − Jp̄)−1

=
∑

∞

k=0 s
−(k+1)β Jkp̄ , we have:

Wp̂(s) =
∑

∞

k=0 s
−γ k−1Jkp̂C1 ;

Wp̄(s) =
∑

∞

k=0 s
−βk−1Jkp̄C2 .

(19)

Then:

Zp̂(t) =
∑

∞

k=0
tγ k

Γ (kγ+1) J
k
p̂C1 ;∑

∞ tβk k
(20)
Zp̄(t) = k=0 Γ (kβ+1) Jp̄C2 .
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Let q∗ be the index of the nilpotent matrix Hq̄, i.e. H
q∗

q̄ = 0q̄,q̄. Then, if we obtain the following matrix equations:

Hq̄Z
(β)
q (t) = Zq(t)

H2
q̄ Z

(2β)
q (t) = Hq̄Z

(β)
q (t)

H3
q̄ Z

(3β)
q (t) = H2

q̄ Z
(2β)
q (t)

H4
q̄ Z

(4β)
q (t) = H3

q̄ Z
(3β)
q (t)

...

Hq∗−1
q̄ Z ([q∗−1]β)

q (t) = Hq∗−2
q̄ Z ([q∗−2]β)

q (t)

Hq∗

q̄ Z (q∗β)
q (t) = Hq∗−1

q̄ Z ([q∗−1]β)
q (t)

,

by taking the sum of the above equations and using the fact that Hq∗

q̄ = 0q̄,q̄, we arrive at Hq̄ = 0q̄,1. Similarly, Hq̂ = 0q̂,1.
Hence, the solution of the subsystem (18) is:

Zq(t) = 0q,1 . (21)

o conclude, by combining (20) and (21), for the case of a regular pencil, system (6) has the solution:

Y (t) = QZ(t) =
[

Qp,γ Qp,β Qq
]⎡⎢⎣

∑
∞

k=0
tγ k

Γ (kγ+1) J
k
p̂C1∑

∞

k=0
tβk

Γ (kβ+1) J
k
p̄C2

0q,1

⎤⎥⎦ ,
or, equivalently,

Y (t) = Qp,γ

∞∑
k=0

tγ k

Γ (kγ + 1)
Jkp̂C1 + Qp,β

∞∑
k=0

tβk

Γ (kβ + 1)
Jkp̄C2 .

From here, we arrive at (15). Next, we consider system (6) with a singular pencil and r > m. In general, the class of sF −G
is then characterized by a uniquely defined element, known as the complex Kronecker canonical form, see [35], specified
by the complete set of invariants of the singular pencil sF − G. This is the set of the finite–infinite eigenvalues and the
minimal column–row indices. In the case of r > m, there exist only row minimal indices. Let Nl be the left null space of
matrix. Then, the equations V T (s)(sF −G) = 01,m, have solutions in V (s), which are vectors in the rational vector spaces
l(sF − G). The binary vectors V T (s) express dependence relationships among the rows of sF − G. Note that V (s) ∈ Cr×1

re polynomial vectors. Let t = dimNl(sF − G). It is known that Nl(sF − G), as rational vector spaces, are spanned by
inimal polynomial bases of minimal degrees:

ς1 = ς2 = · · · = ςh = 0 < ςh+1 ≤ · · · ≤ ςh+k ,

hich is the set of row minimal indices of sF − G. This means there are h + k row minimal indices, but k non-zero row
inimal indices. We are interested only in the k non zero minimal indices. To sum up, the invariants of a singular pencil
ith r > m are the finite–infinite eigenvalues of the pencil and the minimal row indices as described above. Following
he above given analysis, there exist non-singular matrices P , Q with P ∈ Cr×r , Q ∈ Cm×m, such that:

PFQ = FK = Ip ⊕ Hq ⊕ Fς ,
PGQ = GK = Jp ⊕ Iq ⊕ Gς ,

(22)

here Jp is the Jordan matrix for the finite eigenvalues, Hq a nilpotent matrix with index q∗ which is actually the Jordan
atrix of the zero eigenvalue of the pencil sG − F . The matrices Fς , Gς are defined as:

Fς =

[
Iςh+1
01,ςh+1

]
⊕

[
Iςh+2
01,ςh+2

]
⊕ · · · ⊕

[
Iςh+k
01,ςh+k

]
,

Gς =

[
01,ςh+1
Iςh+1

]
⊕

[
01,ςh+2
Iςh+2

]
⊕ · · · ⊕

[
01,ςh+k
Iςh+k

]
,

(23)

ith p + q +
∑k

i=1[ςh+i] + k = r , p + q +
∑k

i=1[ςh+i] = m. Finally, the matrices P , Q can be written as:

P =

[ P1
P2
P3

]
, Q =

[
Qp Qq Qς

]
, (24)

ith P ∈ Cp×r , P ∈ Cq×r , P ∈ Cς1×r , ς = k+
∑k

[ς ] and Q ∈ Cm×p, Q ∈ Cm×q, Q ∈ Cm×ς2 and ς =
∑k

[ς ].
1 2 3 1 i=1 h+i p q ς 2 i=1 h+i
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By substituting the transformation Y (t) = QZ(t) into (6), multiplying by P , using (22), (24) and setting Z(t) =[ Zp(t)
Zq(t)
Zς (t)

]
, Zp(t) ∈ Cp×1, Zp(t) ∈ Cq×1 and Zς (t) ∈ Cς2×1, we arrive at the subsystems (17), (18), and:

FςZ (β)
ς (t) = GςZς (t) . (25)

For the subsystem (25), let

Zς (t) =

⎡⎢⎢⎣
Zςh+1 (t)
Zςh+2 (t)
...

Zςh+k (t)

⎤⎥⎥⎦ , Zςh+i (t) ∈ C(ςh+i)×1, i = 1, 2, . . . , k (26)

with

Zςh+i (t) =

⎡⎢⎢⎣
Zςh+i,1(t)
Zςh+i,2(t)

...

Zςh+i,ςh+i (t)

⎤⎥⎥⎦ . (27)

By replacing (23) into (25), we get:[
Iςh+i
01,ςh+i

]
Z (β)
ςh+i

(t) =

[
01,ςh+i
Iςh+i

]
Zςh+i (t) ,

or, equivalently, by using the above expressions:⎡⎢⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1
0 0 . . . 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

Z (β)
ςh+i,1

(t)

Z (β)
ςh+i,2

(t)
...

Z (β)
ςh+i,ςh+i (t)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0 . . . 0
1 0 . . . 0
...

... . . .
...

0 0 . . . 0
0 0 . . . 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

Zςh+i,1(t)
Zςh+i,2(t)

...

Zςh+i,ςh+i (t)

⎤⎥⎥⎦ ,
or, equivalently,

Z (β)
ςh+i,1

(t) = 0
Z (β)
ςh+i,2

(t) = Zςh+i,1(t)
...

Z (β)
ςh+i,ςh+i (t) = Zςh+i,ςh+i−1(t)

0 = Zςh+i,ςh+i (t)

.

e have a system of ςh+i+1 FDEs and ςh+i unknowns. Starting from the last equation, we get the solutions:

Zςh+i,ςh+i (t) = 0
Zςh+i,ςh+i−1(t) = 0
Zςh+i,ςh+i−2(t) = 0

...

Zςh+i,1(t) = 0 .

(28)

n order to solve the system we used the last ςj equations and concluded that system (25) has the zero solution. Hence,
lso in this case, the solutions are given by (15). For (b) we can rewrite the Jordan matrix in the form:

Jp̂ := Jp̂1 (λ1) ⊕ . . .⊕ Jp̂µ (λµ) ,

Jp̄ := Jp̄1 (λ1) ⊕ · · · ⊕ Jp̄µ (λµ) ,

where

Jpi (λi) =

⎡⎢⎢⎢⎢⎣
λi 1 . . . 0 0
0 λi . . . 0 0
...

...
. . .

...
...

0 0 . . . λi 1

⎤⎥⎥⎥⎥⎦ ∈ Cpi×pi , i = 1, 2, . . . , µ.
0 0 . . . 0 λi
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n addition, the matrix Qp can be written in the form:

Qp̂ =
[

u1,p̂1 . . . u1,2 u1,1 . . . uµ,p̂µ . . . uµ,2 uµ,1
]
,

Qp̄ =
[
v1,p̄1 . . . v1,2 v1,1 . . . vµ,p̄µ . . . vµ,2 vµ,1

]
,

here ui,j, j = 1, 2, . . . , p̂i linear independent eigenvectors, vi,j, j = 1, 2, . . . , p̄i linear independent eigenvectors of λi,
i = 1, 2, . . . , µ. Furthermore, C1, C2 can be written as:

C1 =
[

c1,p̂1 . . . c1,2 c1,1 . . . cµ,p̂µ . . . cµ,2 cµ,1
]T
,

C2 =
[

c1,p̄1 . . . c1,2 c1,1 . . . cµ,p̄µ . . . cµ,2 cµ,1
]T
,

where ci,j ∈ C, i = 1, 2, . . . , µ, j = 1, 2, . . . , p̂i, di,j ∈ C, i = 1, 2, . . . , µ, j = 1, 2, . . . , p̄iconstants. If we replace the above
expressions in the general solution we arrive at:

Y (t) =

µ∑
i=1

∞∑
k=0

( γ
√
λit)γ k

Γ (kγ + 1)

p̂i∑
j=1

( j∑
k=1

ci,j−(k−1)tk−1)ui,j+

µ∑
i=1

∞∑
k=0

( β
√
λit)βk

Γ (kβ + 1)

p̄i∑
j=1

( j∑
k=1

di,j−(k−1)tk−1)vi,j ,
where ci,j−(k−1), di,j−(k−1) ∈ C, constants. From the transformation Y (t) = QZ(t) from the proof in (a), we have Y (t) =

pZp(t) or, equivalently,

Y = QpZp .

rom (14) we have that P1EQp = Ip. By multiplying the above expression by P1E we have:

P1EY = P1EQpZp ,

r, equivalently,

Zp = P1EY .

ence:

Zp(0) = P1EY (0) .

rom (14), we have:

P1 =

[
P1,γ
P1,β

]
.

e set

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,p̂1
...

w1,2
w1,1
...

wµ,p̂µ
...

wµ,2
wµ,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1,p̄1
...

ω1,2
ω1,1
...

ωµ,p̄µ
...

ωµ,2
ωµ,1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

here wi,j, j = 1, 2, . . . , p̂i, ωi,j, j = 1, 2, . . . , p̄i linear independent left eigenvectors of λi, i = 1, 2, . . . , µ. By replacing
he above expressions into the general solution we arrive at:

Y (t) =

µ∑
i=1

∞∑
k=0

( γ
√
λit)γ k

Γ (kγ + 1)

p̂i∑
j=1

( j∑
k=1

tk−1wi,j−(k−1)EY (0)
)
ui,j+

µ∑ ∞∑ ( β
√
λit)βk

Γ (kβ + 1)

p̄i∑( j∑
tk−1ωi,j−(k−1)EY (0)

)
vi,j.
i=1 k=0 j=1 k=1
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System (6) is asymptotically stable if limt→+∞ Y (t) = 0m,1. This holds if all eigenvalues λ of the pencil sF − G satisfy:

max
{
Arg(λ)
γ

,
Arg(λ)
1 − γ

}
>
π

2
(rad) ,

or, equivalently (16) holds. The proof is complete.

Having identified the conditions under which there exist solutions for singular systems in the form of (6), we can now
present the following Corollary:

Corollary 2.1. If there exist solutions for system (6), then in the case that:

(a) The pencil of the system is regular;
(b) The pencil of the system is singular with r > m.

Then, for given initial conditions Y (t0) = Y0, the solution is unique if and only if:

Y0 ∈ colspan(Qp) . (29)

The solution is then given by (15) and C is the unique solution of the linear system:

QpC = Y0 . (30)

Proof. This is a direct result from Theorem 2.2. For both (a), (b) if we use the formula (15) for t = 0 we get:

Y (0) = QpC ,

and we arrive at condition (29) because C is assumed an unknown vector. The above linear system has always a unique
solution for C since the matrix Qp has linear independent columns. The proof is complete.

Theorem 2.2 can be used to further develop methods to measure the participation of system eigenvalues in system
states [36] for singular linear systems of FDEs as well as for the extension of linear fractional operators, see [37], and their
applications into electrical power systems, see [38].

3. Numerical examples

In this section, we provide two examples. In the first example, we exploit the main results of this article by studying
a small linear singular system of differential equations with regular pencil. In the second example, we study the damping
of the electro-mechanical oscillations of a 3-bus power system through a fractional order power system stabilizer.

3.1. Numerical example 1

We consider system (2) with:

Epr =

⎡⎢⎢⎢⎢⎢⎢⎣

4 9 9 −2 10 7 3
1 5 2 2 3 1 1
1 0 −2 −2 6 4 1
5 −2 −3 18 3 16 2
6 8 6 8 6 14 2
2 11 3 6 6 2 2
4 5 5 6 2 9 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Apr =

⎡⎢⎢⎢⎢⎢⎢⎣

−15 −43 −39 4 −35 −22 −5
−3 −19 −2 −5 −12 −2 1
−4 −16 −30 6 −9 −1 −7

−25 −2 3 −72 −3 −74 −4
−27 −32 −23 −39 −24 −66 −5
−8 −41 −15 −18 −24 −8 −8

−18 −15 −9 −29 −13 −48 −1

⎤⎥⎥⎥⎥⎥⎥⎦ , Bpr =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The matrix pencil sEpr − sApr has p = 5 finite, distinct eigenvalues λ1 = −5, λ2 = −4, λ3 = 1, λ4 = −2 and λ5 = −3.
The pencil also has the eigenvalue λ6 = ∞ with algebraic multiplicity q = 2. The rightmost eigenvalue of the pencil is
λ3 > 0, and thus the system is unstable. The output of the system is given by (3), where:

C =
[

0 0 0 0 0 1 0
]
, D = 0 .
pr pr
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Fig. 1. FOPI block diagram.

n order to stabilize the system, we consider the following simple form of controller (4):

Xc
(γ )

= kiξ ,
U = Xc + kpξ .

(31)

q. (31) describes a fractional order proportional–integral controller (FOPI), where kp = 7, ki = 10, are the proportional
nd integral gains, respectively; γ = 0.6 is the controller’s fractional order. The block diagram of the FOPI is shown in
ig. 1.
Then, the closed-loop system is described by (5), where

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 9 9 −2 10 7 3 0 0
1 5 2 2 3 1 1 0 0
1 0 −2 −2 6 4 1 0 0
5 −2 −3 18 3 16 2 0 0
6 8 6 8 6 14 2 0 0
2 11 3 6 6 2 2 0 0
4 5 5 6 2 9 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ẽ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−15 −43 −39 4 −35 −22 −5 0 0
−3 −19 −2 −5 −12 −2 1 0 0
−4 −16 −30 6 −9 −1 −7 0 0

−25 −2 3 −72 −3 −74 −4 0 0
−27 −32 −23 −39 −24 −66 −5 0 0
−8 −41 −15 −18 −24 −8 −8 0 1.0

−18 −15 −9 −29 −13 −48 −1 0 0
0 0 0 0 0 10 0 0 0
0 0 0 0 0 7 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The stability of the closed-loop system can be checked by calculating the eigenvalues of the matrix pencil sF−G, where
, G, are defined in (6). In our case:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 4 9 9 −2 10 7 3 0 0
0 0 0 0 0 0 0 0 0 1 5 2 2 3 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 −2 −2 6 4 1 0 0
0 0 0 0 0 0 0 0 0 5 −2 −3 18 3 16 2 0 0
0 0 0 0 0 0 0 0 0 6 8 6 8 6 14 2 0 0
0 0 0 0 0 0 0 0 0 2 11 3 6 6 2 2 0 0
0 0 0 0 0 0 0 0 0 4 5 5 6 2 9 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 2. Numerical example 1. Eigenvalues of sF − G. Shaded is the region of instability |φ| < 0.628 rad.

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

−15 −43 −39 4 −35 −22 −5 0 0 0 0 0 0 0 0 0 0 0
−3 −19 −2 −5 −12 −2 1 0 0 0 0 0 0 0 0 0 0 0
−4 −16 −30 6 −9 −1 −7 0 0 0 0 0 0 0 0 0 0 0
−25 −2 3 −72 −3 −74 −4 0 0 0 0 0 0 0 0 0 0 0
−27 −32 −23 −39 −24 −66 −5 0 0 0 0 0 0 0 0 0 0 0
−8 −41 −15 −18 −24 −8 −8 0 1 0 0 0 0 0 0 0 0 0
−18 −15 −9 −29 −13 −48 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 7 0 1 −1 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

The pencil sF − G has p̂ = 11 distinct finite eigenvalues λ̂1,2 = 1.816 ± j2.679, λ̂3 = −1.130, λ̂4,5 = 1.840 ± j0.996,
ˆ6,7 = −0.0109 ± j1.751, λ̂8,9 = −0.044 ± j1.940, λ̂10,11 = 0.0211 ± j2.2004, and the infinite eigenvalue λ12 = ∞ with
lgebraic multiplicity q̂ = 7. For fractional order γ = 0.6, we have that γ̃ = min {0.6, 0.4} = 0.4 in (16), and thus, the
losed-loop system is stable if the arguments φi = Arg(λ̂i) of the finite eigenvalues λ̂i, i = 1, 2, . . . , 11, satisfy:

|φi| >
π

5
= 0.628 rad .

The finite eigenvalues of sF − G are illustrated in Fig. 2. The system is stable, since all eigenvalues lie in the region
given in . Finally, the general analytical solution of the system requires to calculate the matrices Qp, Jp (see (15) ). These
matrices are provided in Appendix A.

3.2. Numerical example 2

Power system models for rotor angle and voltage transient stability studies are formulated as a set of non-linear
differential algebraic equations. Transient stability refers to the ability of a power system to maintain synchronism and
restore a stationary condition after a perturbation.

The semi-implicit formulation of a power system model is as follows [39]:[
T 0
R 0

][
ẋ
0

]
=

[
f (x, y)
g(x, y)

]
,

where f , g are the differential, algebraic equations, respectively; x ∈ Rn, y ∈ Rm are the state and algebraic variables,
respectively; and T , R, are the left handside coefficient matrices. If the examined perturbations are sufficiently small,
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Fig. 3. 3-bus power system scheme.

Table 1
3-bus power system. Branch data with power base Sb = 100 MVA.
Branch From (i) To (k) Ri,k Xi,k Bi,k
# # # [pua(Ω)] [pu(Ω)] [pu(Ω−1)]

1 1 2 0.022 0.220 0.385
2 1 3 0.010 0.110 0.385
3 2 3 0.011 0.110 0.385

aper unit system (pu); in the analysis of power systems, quantities are often expressed as fractions of defined base
units.

Table 2
3-bus power system. Data of the synchronous generators.
Generator # 1 2

Sn [MVA] 1800.0 1800.0
Vn [pu(kV)] 230.0 230.0
Model dyn. order 5 6
H [MWs/MVA] 6.500 6.175
T ′

do , T
′′

do [s] 8.00, 0.03 8.00, 0.03
T ′
qo , T

′′
qo [s] 0.00, 0.03 0.40, 0.05

Xd , X ′

d , X
′′

d [pu(Ω)] 1.80, 0.30, 0.25 1.80, 0.30, 0.25
Xq , X ′

q , X
′′
q [pu(Ω)] 1.70, 0.55, 0.25 1.70, 0.55, 0.25

Xl [pu(Ω)] 0.20 0.20
Rα [pu(Ω)] 0.0025 0.0025

stability can be assessed by considering the linearized power system model around a stationary point (x0, y0). This system
can be described as:

T∆ẋ = fx∆x + fy∆y
R∆ẋ = gx∆x + gy∆y ,

where fx, fy, gx, gy are Jacobian matrices, and ∆x = x − x0, ∆y = y − y0. Equivalently, we can write:

EprY ′
= AprY ,

here Y =

[
∆x
∆y

]
, Epr =

[
T 0
R 0

]
, Apr =

[
fx fy
gx gy

]
.

The power system considered in this example is shown in Fig. 3. It consists of two synchronous generators (SG), each
of which is equipped with an automatic voltage regulator (AVR) that stabilizes the terminal voltage by controlling the
current in the rotor field winding; three electric power transmission lines, which operate at nominal voltage 230 kV and
nominal frequency 60 Hz; and three constant power loads. The models of the components used in this example can be
found in many power system textbooks, e.g. in [40]. Table 1 shows the transmission line parameters. The parameters of
the SG and AVR models are shown in Tables 2 and 3, respectively.

The matrices T , R, fx, fy, gx and gy, which define the linearized system around the examined stationary point, are given
n Appendix B. This system is stable, since the real parts of all finite eigenvalues of the pencil sEpr − Apr are negative. In
articular, the sEpr − Apr has p = 19 finite eigenvalues and the infinite eigenvalue with algebraic multiplicity q = 32. The
ightmost eigenvalues of sEpr − Apr are shown in Fig. 4. The dominant complex pair of eigenvalues is −0.181 ± j4.521
nd represents the electro-mechanical oscillatory mode of the system. This can be found for example by carrying modal
articipation analysis of the system.
A complex eigenvalue λi can be written as λi = |λi|(cosφi + j sinφi). Then, the damping ratio ζi = − cosφi measures

ow the oscillation decays after a perturbation. In a first order system, zero damping defines the border between stability
π rad. The power system is said to be well-damped, if for all oscillatory modes,
nd instability and corresponds to φm = 2
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Table 3
3-bus power system. Data of the synchronous generator AVRs.
Generator # 1 2

Model dyn. order 4 4
Kα , Ke , Kf 40.0, 1.00, 0.001 40.0, 1.00, 0.001
Tα , Te , Tf 0.055, 0.36, 1.0 0.055, 0.30, 1.0
Tr 0.05 0.05
Ae , Be 0.0056, 1.075 0.0056, 1.075
vmin
α , vmax

α −5.0 , 5.0 −5.0 , 5.0

Fig. 4. 3-bus power system. Rightmost eigenvalues of sEpr − Apr .

the damping ratio is higher than a threshold, e.g. ζ > 5%. In Fig. 4, we have drawn the lines that define a damping of
ζ = 5%. As it can be seen, the dominant pair is not well damped.

A standard solution for suppressing a not well damped electro-mechanical oscillation in power systems is the
installation of a power system stabilizer (PSS). In this example, we study a fractional order PSS (FOPSS). The FOPSS input is
assumed to be the rotor speed of synchronous generator SG1, while the control output is considered to be part of the SG1
AVR reference voltage [40]. That said, the open-loop system takes the form of (2), (3), where: Bpr ∈ R51×1, Cpr ∈ R1×51;
Bpr defines the control placement (SG1 AVR reference), and its elements are Bpr (i) = 0, if i ̸= 50, Bpr (i) = 1, if i = 50; Cpr
defines the measured variable (SG1 rotor speed), and its elements are Cpr (i) = 0, if i ̸= 2, Cpr (i) = 1, if i = 2; and Dpr = 0.

The block diagram of the FOPSS is shown in Fig. 5. It consists of a washout filter and three fractional order lead–lag
blocks. The FOPSS can be written in the form of (4), where:

Ec1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tw 0 0 0 0 0 0 0
Tw 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ec2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 T2 0 0 0 0 0
0 0 T1 0 0 0 0 0
0 0 0 0 T4 0 0 0
0 0 0 0 T3 0 0 0
0 0 0 0 0 0 T6 0
0 0 0 0 0 0 T5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ac =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 K −1 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

The parameters of the FOPSS are summarized in Table 4. The closed-loop system is calculated according to (5). Finally,
we compute the eigenvalues of the pencil sF − G, where F , G are defined according to (6). The pencil sF − G has p̂ = 43
distinct finite eigenvalues and the infinite eigenvalue with algebraic multiplicity q̂ = 77. For γ = 0.8, we have that

{ } ˆ
γ̃ = min 0.8, 0.2 = 0.2 in (16), and thus, the closed-loop system is stable if the arguments φi = Arg(λi) of the finite
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Table 4
FOPSS parameters.
Tw = 14 s, T1 = T3 = T5 = 0.5056 s, T2 = T4 = T6 = 0.1007 s, Kw = 20, γ = 0.8

Fig. 5. FOPSS block diagram.

Fig. 6. 3-bus power system. Rightmost eigenvalues of sF − G. Shaded is the region of instability |φ| < 0.314 rad.

eigenvalues λ̂i, i = 1, 2, . . . , 11, satisfy:

|φi| > γ̃
π

2
=
π

10
= 0.314 rad .

The rightmost eigenvalues of sF − G are shown in Fig. 6. The border between stability and instability is φm = 0.314 rad,
and this corresponds to a ζm = − cosφm = −0.95. We say that the system is well-damped, if for all eigenvalues it

Fig. 7. 3-bus power system. Rightmost eigenvalues of sÊpr − Âpr .
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is ζi > − cosφm + 0.05, that in our case corresponds to ζi = −0.9. In Fig. 6, we have drawn the lines that define
ζ = − cosφm + 0.05 = −0.9. As it can be seen, the system is well-damped.

Finally, we provide a simple test on the robustness of the FOPSS. We consider that the transmission line that connects
buses 1 and 3 is out of service. In the new stationary point, let Êpr , Âpr , be the matrices that describe the system without
the FOPSS. The rightmost eigenvalues of sÊpr − Âpr are shown in Fig. 7. The stability of the system with inclusion of the
FOPSS can be studied by calculating the new matrices F̂ , Ĝ. The rightmost eigenvalues of sF̂ − Ĝ are shown in Fig. 8. As
it can be seen, the 3-bus system with the line 1–3 out of service is unstable if the FOPSS is not installed. With the FOPSS,
the system is stable and well-damped.

4. Conclusions

This article considers the singular linear system of first order (2), and the output (3). We introduce a generalized
fractional order feedback controller of (C) type (4), and study the closed loop system (6). The results provide insight
on the existence and uniqueness of solutions, as well as on the stability of systems with inclusion of fractional order
controllers.

A further extension of this paper is to study practical implementation aspects of fractional order controllers for
electrical power system applications, and also provide results on the stability analysis of such dynamic systems with
inclusion of fractional order derivatives. We also aim to provide a method to measure the participation of system
eigenvalues in system states, and vice versa, for singular linear systems of FDEs.
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Appendices

This section provides the data used in the numerical examples. In particular, Appendix A includes the data of numerical
example 1 and Appendix B includes the data of numerical example 2.

Appendix A

Qp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.07 0.07 −0.26 0.14 − 0.22i 0.14 + 0.22i −0.15 − 0.37i −0.15 + 0.37i 0.09 + 0.01i 0.09 − 0.01i −0.07 + 0.24i −0.07 − 0.24i

−0.01 −0.01 0.02 −0.02 − 0.01i −0.02 + 0.01i 0.04 + 0.07i 0.04 − 0.07i −0.02 + 0.04i −0.02 − 0.04i −0.03i 0.03i

0 0 −0.02 0.01i −0.01i −0.03i 0.03i 0.01i −0.01i 0.02i −0.02i

0 0 −0.02 0.01 + 0.03i 0.01 − 0.03i 0.01 + 0.23i 0.01 − 0.23i 0.03 − 0.03i 0.03 + 0.03i 0.03i −0.03i

0.01 0.01 0.03 0.01 + 0.07i 0.01 − 0.07i 0 0 0.06i −0.06i −0.02 + 0.02i −0.02 − 0.02i

−0.02 −0.02 0.1 −0.06 + 0.04i −0.06 − 0.04i 0.04 − 0.02i 0.04 + 0.02i −0.04 + 0.01i −0.04 − 0.01i 0.03 − 0.02i 0.03 + 0.02i

−0.02 −0.02 0.02 −0.02 + 0.08i −0.02 − 0.08i 0.03 + 0.05i 0.03 − 0.05i −0.03 + 0.01i −0.03 − 0.01i 0.01 − 0.1i 0.01 + 0.1i

−0.05 + 0.06i −0.05 − 0.06i −0.89 0.29 + 0.62i 0.29 − 0.62i −0.12 − 0.24i −0.12 + 0.24i 0.03 + 0.21i 0.03 − 0.21i −0.1 − 0.16i −0.1 + 0.16i

−0.22 + 0.04i −0.22 − 0.04i −0.19 −0.11 + 0.89i −0.11 − 0.89i 0.18 − 0.39i 0.18 + 0.39i −0.26 + 0.26i −0.26 − 0.26i 0.14 − 0.31i 0.14 + 0.31i

0.12 + 0.18i 0.12 − 0.18i 0.29 0.24 + 0.1i 0.24 − 0.1i 0.65 − 0.26i 0.65 + 0.26i −0.02 + 0.17i −0.02 − 0.17i −0.53 − 0.16i −0.53 + 0.16i

−0.01 − 0.02i −0.01 + 0.02i −0.02 0.01 − 0.03i 0.01 + 0.03i −0.13 + 0.07i −0.13 − 0.07i −0.09 − 0.04i −0.09 + 0.04i 0.06 0.06

−0.01 − 0.01i −0.01 + 0.01i 0.02 −0.01 −0.01 0.06 0.06 −0.01 − 0.01i −0.01 + 0.01i −0.04 + 0.01i −0.04 − 0.01i

0.01i −0.01i 0.02 −0.03 + 0.02i −0.03 − 0.02i −0.4 + 0.01i −0.4 − 0.01i 0.06 + 0.05i 0.06 − 0.05i −0.07 − 0.01i −0.07 + 0.01i

0.01 + 0.02i 0.01 − 0.02i −0.04 −0.07 + 0.02i −0.07 − 0.02i −0.01 −0.01 −0.12 + 0.01i −0.12 − 0.01i −0.05 − 0.05i −0.05 + 0.05i

−0.04 − 0.07i −0.04 + 0.07i −0.11 −0.05 − 0.05i −0.05 + 0.05i 0.04 + 0.08i 0.04 − 0.08i −0.02 − 0.08i −0.02 + 0.08i 0.05 + 0.08i 0.05 − 0.08i

−0.04 − 0.05i −0.04 + 0.05i −0.02 −0.09 − 0.01i −0.09 + 0.01i −0.09 + 0.05i −0.09 − 0.05i −0.03 − 0.05i −0.03 + 0.05i 0.22 + 0.02i 0.22 − 0.02i

−0.24 − 0.03i −0.24 + 0.03i 1 −0.56 + 0.4i −0.56 − 0.4i 0.43 − 0.21i 0.43 + 0.21i −0.41 + 0.07i −0.41 − 0.07i 0.35 − 0.22i 0.35 + 0.22i

−0.49 − 0.51i −0.49 + 0.51i 0.21 −0.91 + 0.06i −0.91 − 0.06i 0.68 + 0.32i 0.68 − 0.32i −0.52 − 0.48i −0.52 + 0.48i 0.69 + 0.31i 0.69 − 0.31i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 8. 3-bus power system. Rightmost eigenvalues of sF̂ − Ĝ.

Jp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.82 + 2.68i 0 0 0 0 0 0 0 0 0 0
0 1.82 − 2.68i 0 0 0 0 0 0 0 0 0
0 0 −1.13 0 0 0 0 0 0 0 0
0 0 0 0.18 + 1.0i 0 0 0 0 0 0 0
0 0 0 0 0.18 − 1.0i 0 0 0 0 0 0
0 0 0 0 0 −0.01 + 1.75i 0 0 0 0 0
0 0 0 0 0 0 −0.01 − 1.75i 0 0 0 0
0 0 0 0 0 0 0 0.04 + 1.94i 0 0 0
0 0 0 0 0 0 0 0 0.04 − 1.94i 0 0
0 0 0 0 0 0 0 0 0 0.02 + 2.2i 0
0 0 0 0 0 0 0 0 0 0 0.02 − 2.2i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix B

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 234.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8.0 0.225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.033 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 222.3 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 8.0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.36 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.055 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −0.001 0 0 0 1.0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.001 0 0 0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−0.093 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

fx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1.0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1.0 −1.0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1f .0 0 0 −1.0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1.051 0 1.0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.113 0 1.0 0 0
0 0 0 0 0 0 0 0 0 0 0 −40.0 0 0 0 −1.0 0 −40.0 0
0 0 0 0 0 0 0 0 0 0 0 0 −40.0 0 0 0 −1.0 0 −40.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

fy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −5.407 3.836 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 −0.511 −0.872 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 −0.083 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.006 0 0 0 0 0 0 0 0 0 0 0 0 0

−1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.019 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −8.397 11.48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 −0.793 −0.645 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.06 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 −0.083 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.003 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0
0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40.0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40.0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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gx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0

0.872 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−0.51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −0.5 −0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −0.857 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0
0 0 0 0 0 0.643 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −0.791 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

gy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.064 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0

0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0

0 0 0 0 0 13.51 −4.657 −8.853 4.253 0.135 1.594 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −4.538 13.6 −9.065 −1.047 2.047 0.342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0

0 0 0 0 0 −8.425 −8.819 17.24 −3.107 −2.083 −1.971 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1.705 −0.137 −1.567 13.15 −4.566 −9.004 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1.057 −0.721 −0.336 −4.493 13.42 −9.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0

0 0 0 0 0 3.138 2.124 −5.262 −8.341 −8.646 17.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −0.872 0 0 0.505 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0.51 0 0 0.863 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0 0

0.143 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.836 5.407 0.51 0.872 −1.0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −5.407 3.836 0.872 −0.51 0 −1.0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.643 0 0 0.776 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.791 0 0 0.631 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0 0 0 0 0 0

0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 0 0 0

0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.014 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.48 8.397 0.791 0.643 −1.0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8.397 11.48 0.643 −0.791 0 −1.0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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