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Abstract—The paper discusses the relationships between elec-
trical quantities, such as voltages, currents, and frequency, and
geometrical ones, namely curvature and torsion. The proposed
approach is based on the Frenet frame utilized in differential
geometry and provides a general framework for the definition of
the time derivative of electrical quantities in stationary as well
as transient conditions. As a byproduct, the proposed approach
unifies and generalizes the time- and phasor-domain frameworks.
Other noteworthy results are a new interpretation of the link be-
tween frequency and the time derivatives of voltage and current;
and a definition of the rate of change of frequency that includes
the novel concept of “torsional frequency.” Several numerical
examples based on balanced, unbalanced, harmonically-distorted
and transient voltages illustrate the findings of the paper.

Index Terms—Differential geometry, Frenet frame, curvature,
torsion, time derivative, frequency, Rate of Change of Frequency
(RoCoF), Park transform.

I. NOTATION

In this paper, scalars are indicated with normal font,
e.g. x, whereas vectors are indicated in bold face, e.g. x =
(x1, x2, x3). All vectors have order 3, unless otherwise indi-
cated.

Scalars:
s length of a curve
t time
V voltage magnitude
w angular frequency
η symmetric part of the geometric RoCoF
θ voltage phase angle
κ curvature
ξ torsional frequency
ρ symmetric part of the geometric frequency
τ torsion
ω magnitude of vector ω

Vectors:
0 null vector
B binormal vector of the Frenet frame
ei i-th vector of an orthonormal basis
ı current vector
n normal vector before normalization
N normal vector of the Frenet frame
q electric charge vector
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T tangent vector of the Frenet frame
v voltage vector
ϕ magnetic flux vector
ω antisymmetric part of the geometric frequency

Derivatives:
x′,x′ derivative of a scalar/vector with respect to t
ẋ, ẋ derivative of a scalar/vector with respect to s
Dx

t time derivative operator applied to vector x

II. INTRODUCTION

A. Motivation

The study and simulation of circuit dynamics has tradition-
ally been approached using different frameworks. Stationary
AC circuits are conveniently studied using quantities such as
phasors and impedances; circuits with harmonic contents are
studied using Fourier analysis or similar frequency-domain
approaches; rotating machines and power electronic devices
are often studied using Park and/or Clarke transforms; generic
transients are studied using a time-domain analysis [1]. In this
paper, we propose an approach based on differential geometry,
more specifically on the Frenet frame [2]. This approach leads
to the definition of a framework that admits, as special cases,
the circuit analysis transformations mentioned above.

B. Literature Review

Differential geometry finds applications in several fields
of science and engineering. Some examples are the use of
differential geometric properties, such as that of curvature, in
image segmentation and three-dimensional object description
[3], as well as in robotic control along geodesic paths [4].
Another relevant example are the utilities of the Frenet frame
in the area of autonomous vehicle driving [5], [6]. Moreover,
there is a number of applications that are based on the theory
of geometric algebra, for example the use of quaternions in
computer graphics and visualization [7], [8] and in the control
of multi-agent networked systems [9].

The utilization of concepts of geometric algebra in circuit
and power system analysis is limited. There is a group of
works that elaborate on the concept of instantaneous power
[10]–[15] that provide an interpretation of the active and reac-
tive power as the inner and cross (or wedge in the polyphase
case) products, respectively, of voltage and currents. More
recently, some studies, including [16]–[20], have attempted to
extend the instantaneous power theory to a systematic study of
electrical quantities or circuits in the framework of geometric
algebra. In the same vein, but using a novel perspective, [21]
makes an additional step by proposing to interpret voltages and
currents as the time derivative of a multi-dimensional curve.
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This interpretation allows the definition of the “geometric
frequency” as the result of an inner and an outer product.

In this work, we exploit differential geometry rather than
geometric algebra. We are interested in the geometrical “mean-
ing” of the time derivative of electrical quantities such as
voltage, current and frequency. With this aim, the formulas
obtained in the paper are deduced through the Frenet frame
[2]. The importance in circuit analysis of the time derivatives
of voltages and currents is apparent as they are required in
the constitutive equations of capacitors and inductors. The
relevance of the Rate of Change of Frequency (RoCoF), on the
other hand, is due to the increasing penetration, in the electric
grid all around the world, of renewable energy sources and
the consequent shift from synchronous to non-synchronous
generation. The RoCoF is, in turn, strictly related to the
amount of available inertia in the system [22]. The ability to
estimate accurately the RoCoF is thus becoming an important
aspect of the measurements utilized by system operators. As
a matter of fact, several works discuss the estimation of the
RoCoF from an instrumentation point of view [23]–[27].

C. Contributions

We apply differential geometry to define a general frame-
work for the definition of electrical quantities and their time
derivatives. The specific contributions of the paper are the
following.

• The derivation of the expressions of the tangent, normal
and binormal vectors of the Frenet frame in terms of the
voltage (or current) of an electrical circuit.

• A novel interpretation of the time derivative of any order
of voltage and current in electrical circuits.

• An expression of the RoCoF which involves the definition
of the novel concept of “torsional frequency,” which is
also proposed and defined in the paper.

• An example that shows that analytic signals commonly
utilized in signal processing are a special case of the
proposed framework in two dimensions.

The meaning and derivation of the vectors of the Frenet frame
when applied to electric quantities such as voltage, current and
frequency are duly discussed in the paper.

D. Organization

The remainder of the paper is organized as follows. Section
III outlines the concepts of differential geometry that are
needed for the derivations of the theoretical results of this
work, which are given in Section IV. Section V illustrates the
formulas of the time derivatives through a series of examples.
The examples are aimed at showing that the formulas derived
in Section IV admit as special cases widely utilized frame-
works such as DC circuits, phasors and Park transform, as
well as illustrate the formulas in unbalanced cases that lead
to the birth of time-variant curvature and torsion. Section VI
draws conclusions and outlines future work.

III. FRENET FRAME OF SPACE CURVES

Let us consider a space curve x : [0,+∞) → R3 with
x = (x1, x2, x3). Where x1 = x1(t), x2 = x2(t), x3 = x3(t),

is the set of parametric equations for the curve. Equivalently:

x = x1 e1 + x2 e2 + x3 e3 , (1)

where (e1, e2, e3) is an orthonormal basis. The length s of the
curve is defined as:

s =

∫ t

0

√
x′(r) · x′(r) dr + s0 , (2)

from which one obtains the expression:

s′ =
ds

dt
=

√
x′ · x′ = |x′| , (3)

where

x′ =
d

dt
(x1 e1) +

d

dt
(x2 e2) +

d

dt
(x3 e3) , (4)

and · represents the inner product of two vectors, which
in three dimensions, for a = (a1, a2, a3), b = (b1, b2, b3),
becomes:

a · b = a1b1 + a2b2 + a3b3 . (5)

The length s is an invariant of the curve. It is relevant to
observe that, according to the chain rule, the derivative of x
with respect to s can be written as:

ẋ =
dx

ds
=

dx

dt

dt

ds
=

x′

s′
=

x′

|x′| . (6)

The vector ẋ has magnitude 1 and is tangent to the curve x.
The Frenet frame is defined by the tangent vector T, the

normal vector N and the binormal vector B, as follows:

T = ẋ ,

N =
ẍ

|ẍ| ,

B = T×N ,

(7)

where × represents the cross product, which in three dimen-
sions can be written as the determinant of a matrix, as follows:

a× b =

∣∣∣∣∣∣
e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ . (8)

The vectors in (7) are orthonormal, i.e. T = N×B and N =
B×T, and have relevant properties, which can be expressed
as follows [2]:

Ṫ = κN ,

Ṅ = −κT+ τB ,

Ḃ = −τN ,

(9)

where κ and τ are the curvature and the torsion, respectively,
which are given by:

κ = |ẍ| = |x′ × x′′|
|x′|3 , (10)

and

τ =
ẋ · ẍ× ...

x

κ2
=

x′ · x′′ × x′′′

|x′ × x′′|2 . (11)

The quantities defined above, namely κ and τ , as well as (9),
are utilized in the following section.
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IV. ELECTRICAL QUANTITIES IN THE FRENET FRAME

This section presents the main theoretical results of the
paper. In particular, the Frenet frame as well as of the curvature
and torsion of a space curve are expressed in terms of electrical
quantities. Then the expressions of the time derivatives of the
vectors of voltage, current as well as the frequency of these
quantities are derived based on the Frenet frame. A general
expression for higher-order derivatives is also presented at the
end of the section.

A. Voltage and its Time Derivative in the Frenet Frame

The starting assumption of the discussion given in this
section is that the vector of the voltage, v, is the time derivative
of a space curve. From a physical point of view, this means
assuming that the vector that describes the magnetic flux, say
φ, is formally defined as:

φ = −x . (12)

Then, Faraday’s law gives:

v = −φ′ = x′ . (13)

Then one can rewrite the expressions of the vectors T, N and
B of the Frenet frame in terms of the vector for the voltage
and its derivatives.

Let us observe first that the derivative of the length s,
according to (3) and (13), becomes [21]:

s′ = |v| = v , (14)

and, then

ẋ = −φ̇ = −φ′

s′
=

v

v
, (15)

and:
ẍ = −φ̈ =

v′

v2
− v′ v

v3
, (16)

and:
...
x = − ...

φ =
v′′

v3
− 3

v′ v′

v4
+ 3

(v′)2 v

v5
− v′′ v

v4
, (17)

where v′ = d
dt (v) and v′′ = d2

dt2 (v). It is relevant to observe
that, from the property ẋ · ẍ = 0, as these vectors are
orthogonal by construction, and from (15) and (16), one
obtains [21]:

ρ =
v′

v
. (18)

As it is well known, in time-frequency analysis and signal
processing, the quantity ρ is defined as the instantaneous
bandwidth [28]. In this work, however, we rather use the
interpretation of ρ given in [21], namely, the symmetric part
of the geometric frequency.1 It is also relevant to note that,
from a geometrical point of view, ρ v = v′ can be viewed as
the “radial” component of the velocity v. In this vein, ρ can
be defined as radial frequency.

On the other hand, from (10), (13) and (15)-(18), one has:

κ =
|v × v′|

v3
=

|ω|
v

=
ω

v
, (19)

1In this work, the terms symmetric and antisymmetric do not refer to the
properties of a matrix but rather to the effect of operators.

where the vector ω is defined as the antisymmetric component
of the geometric frequency, as follows [21]:2

ω =
v × v′

v2
. (20)

From a geometrical point of view, in 3 dimensions, ω v = |ω| v
can be interpreted as the azimuthal component of the velocity
v. Then, ω can be defined as azimuthal frequency.

Then, using the definition of ω above, the torsion given in
(11) can be rewritten as:

τ =
v · v′ × v′′

ω2 v4
. (21)

The vectors of the Frenet frame can be written as:

T =
v

v
, N =

n

n
, B =

ω

ω
, (22)

where n is the normal vector before normalization, as follows:

n = v′ − ρv ,

n = |n| =
√
|v′|2 − (ρv)2 .

(23)

Note that, from the following property of the scalar triple
product:

a · b× c = c · a× b , (24)

the expression of the torsion can be rewritten as follows:

τ =
v′′ · v × v′

ω2v4
=

v′′ · ω
κ2

, (25)

which indicates that the torsion is null, apart from the obvious
cases v′′ = 0 and ω = 0, if v′′ is perpendicular to ω. This
happens if the voltage vector is unbalanced, as illustrated in
Section V.

We are now ready to present one of the main results of this
paper. Recalling that the Frenet vectors are orthonormal and,
in particular, N = B×T, one has:

n

n
=

ω

ω
× v

v
. (26)

Noting that n is equal to the azimuthal speed, i.e. n = ωv
(see the proof in the Appendix), the expression above can be
simplified as:

n = ω × v , (27)

and, from (23):
v′ = ρv + ω × v . (28)

The previous expression is relevant as it allows the definition
of a time derivative operator. Equation (28) can be, in fact,
written as: (

d

dt
− [ρ+ ω×]

)
v = 0 , (29)

which leads to define the operator:

Dv
t :=

d

dt
− [ρ+ ω×] . (30)

In (30), the upper symbol x in the notation Dx
t indicates

the vector upon which the operator is applied, whereas the

2Note that in [21] the wedge product is used rather than the cross product,
as the definition of the geometric frequency is given for a voltage vector of
arbitrary dimension n. However, for simplicity but without lack of generality,
this paper focuses on the cases for which n ≤ 3.
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subindex t indicates the independent variable with respect to
which the operator is calculated, i.e. time.

Equation (28) and the operator (30) can be interpreted as
follows: the time derivative of a vector can be split into two
components, one symmetric (ρ) and one antisymmetric (ω×).
This operator has been obtained without any assumption on
the time dependence of v nor on its dimension. For dimensions
greater than 3, in fact, it is sufficient to substitute the cross
product with the wedge product [21].

While it has been obtained considering the vector of the
voltage, the time derivative operator defined in (30) can be
applied to any vector that represents the first time derivative
of a space curve. In particular, if one considers the vector of
the current ı = q′, being q the vector of the electric charge
in a given point of a circuit [21], then:

Dı
t ı = 0 . (31)

For simplicity, in the remainder of this work, we focus
exclusively on the voltage. However, all examples provided
in Section V can be equivalently applied to currents.

B. Derivative of the Vector Frequency in the Frenet Frame

To obtain an expression of ω′, we start with (9) and rewrite
the vectors in terms of the derivative with respect to time,
recalling that, for the chain rule:

T′ = vṪ , N′ = vṄ , B′ = vḂ . (32)

Then, one obtains:

T′ = ωN ,

N′ = −ωT+ ξB ,

B′ = −ξN ,

(33)

where ω = vκ from (19) and:

ξ = vτ , (34)

where ξ can be defined as the torsional frequency and has the
unit of s−1, as ω and ρ. From (22) and letting ω′ = d

dtω, the
third equation of (33) can be rewritten as follows:

d

dt

ω

ω
=

ω′

ω
− ωω′

ω2
= −ξ

n

n
, (35)

or, equivalently,
ω′ = ω′ω

ω
− ωξ

n

n
, (36)

or, equivalently,

ω′ = ηω + τ v × ω , (37)

where η = ω′/ω and [τv×] are the symmetric and antisym-
metric parts, respectively, of the time derivative of ω.

Equation (37) expresses the generalization of the RoCoF,
commonly utilized in power system studies as a metric of the
severity of a transient following a contingency or a power
imbalance. For a balanced system, τ is null and, thus, (36)
leads to:

|ω′| = ω′ , (38)

which represents the conventional definition of RoCoF. How-
ever, (36) shows that, when the torsion is not null, e.g., in

unbalanced cases, ω′ is a vector with richer information than
the usual understanding of the RoCoF. Section V illustrates
(36) through numerical examples.

Finally, the time derivative of the symmetric part of the
geometric frequency defined in [21] is:

ρ′ =
v · v′′

v2
+ ω2 − ρ2 =

v′′

v
− ρ2 , (39)

which is obtained from the first equation of (20) and (18).

C. Higher-Order Time Derivatives

The vectors of the Frenet frame constitute a basis for 3-
dimensional systems, hence any vector, including any time
derivatives of the voltage, current, and frequency can be
written in terms of N, T and B. This can be deduced from
(33). For example, the second time derivative of T becomes:

T′′ = ω′ N+ ωN′ = ω′ N− ω2 T+ ωξB , (40)

or, equivalently, in terms of (v,n,ω):

v′′ = (ρ′ + ρ2 − ω2)v + (2ρ+ η)n+ vξω . (41)

While the complexity of the expressions of the coefficients
of higher-order derivatives increases, the following general
expression for the r-th derivative holds:

v(r) = ar v + br n+ cr ω . (42)

For example, for the first two derivatives, one has:

a1 = ρ , b1 = 1 , c1 = 0 ,

a2 = ρ′ + ρ2 − ω2 , b2 = 2ρ− η , c2 = vξ .

The following remarks are relevant.
• Expressions with the same structure as (42) can be written

also for n(r) and ω(r).
• Since n = ω × v, equation (42) is, in turn, a function

exclusively of v and ω.

V. EXAMPLES

This section illustrates the theoretical results above through
special cases that are relevant in circuit and power system
analysis. The first two examples are aimed at illustrating the
properties of (30) in the special cases of DC circuits and
stationary AC circuits. The subsequent examples show the
effect of imbalances and harmonics on the various components
of the frequency of three-phase voltages, as well as on the time
derivative of the frequency itself. In all examples below, we
assume that voltages are curves in three dimensions, where
the basis, unless otherwise stated, is given by the following
orthonormal vectors:

e1 = (1, 0, 0) ,

e2 = (0, 1, 0) ,

e3 = (0, 0, 1) .

(43)

As already said in the theoretical sections, systems with
dimensions higher than 3 can be also considered by using
the wedge product rather than the cross product and the
generalization of the Frenet-Serret formulas. However, the



5

study of voltages with dimensions higher than three is beyond
the scope of this paper.

In Sections V-C to V-E, we show state-space three-
dimensional plots of the voltage v as this quantity has a clear
physical meaning and it is widely used in practice. However, it
is important to keep in mind that, in the proposed framework,
the voltage is, in effect, the time derivative of a position (flux)
vector x = −φ. The curvature and torsion, thus, are those of
such a flux vector, not of the voltage.

In the following, we do not discuss explicitly the behavior
of the vectors T, N and B. However, it is relevant to observe
that the voltage vector v and the antisymmetric part of the
geometric frequency ω, are the tangent and binormal vectors,
namely T and B, of the Frenet frame before normalization.
Moreover, n, which is the normal vector N of the Frenet frame
before normalization, has an important role in the definition of
the time derivative of the voltage, v′, as it is the antisymmetric
part of such a derivative. Thus, the discussions on the behavior
of v, v′ and ω in the examples below are, indirectly, also
discussions of the behavior of the vectors of the Frenet frame.

A. DC Voltage

As a first example, we show the effect of (30) on DC
voltages. From the geometrical point of view, a DC voltage
is equivalent to the time derivative of a curve with one
dimension, i.e. a straight line. Using the vector notation, in
DC, the voltage is a curve that has only one component along
one direction, say e1 of the basis. Then:

v = vdc e1 + 0 e2 + 0 e3 . (44)

It is immediate to show that, for a curve in one dimension,
κ = τ = 0, ω = 0 and, the operator (30) is reformulated as:

Dv
t =

d

dt
− ρ . (45)

Thinking in terms of curves, this result comes with no surprise,
as a straight line cannot rotate or twist. Only the radial
component of the velocity, thus, can be nonnull. It is also
relevant to note that, according to (30), expression (45) states
that the antisymmetric component of the time derivative of DC
quantities is always null.

B. Stationary Single-Phase AC Voltage

Let us consider a stationary single-phase voltage with con-
stant angular frequency wo and magnitude V . Then the voltage
vector can be written as:

v = V cos(wot+ α) e1 + V sin(wot+ α) e2 + 0 e3 , (46)

where α is a constant phase shift.
Note that the representation of the voltage in (46) is that

of an analytic signal, that is, the first component is the
signal itself, namely u(t) = V cos(wot + α), whereas the
second component is the Hilbert transform of the signal, i.e.,
H[u(t)] = V sin(wot + α) [29], [30]. It is important to note
that analytic signals are defined as complex quantities rather
than vectors but, nonetheless, they are intrinsically two dimen-
sional quantities. The utilization of the Frenet framework and

the interpretation of the signal as a curve is more general and,
as shown in this example, admits analytic signals as a special
case.

It is also relevant to note that, a single phase AC voltage
represents, from the geometric point of view, a plane curve.
This is also consistent with the fact that an AC signal requires
two independent quantities to be defined, e.g., magnitude and
phase angle and, hence, the coordinate basis requires two
dimensions to be complete. Applying the definitions given in
the previous section, one can easily find that:

ρ = 0 , ω = wo e3 , ξ = 0 . (47)

These results were expected for a plane curve, which can rotate
(κ = wo/V ̸= 0) but cannot twist (τ = ξ/V = 0). On the
other hand, ρ = 0 is a consequence of the fact that V = const.
Moreover, from (30), one obtains:

Dv
t =

d

dt
− wo [e3×] . (48)

It is worth to further elaborate on (48). We note first that,
since ρ, κ and τ are geometric invariants, same results can be
obtained using any other orthonormal basis. In particular, if
one chooses a basis that rotates at constant angular speed wo:

ê1 = (cos(wot), 0, 0) ,

ê2 = (0, sin(wot), 0) ,

ê3 = (0, 0, 1) ,

(49)

then the voltage vector becomes:

v = V cos(α) ê1 + V sin(α) ê2 = v1 ê1 + v2 ê2 ,

with v = |v| = V and:

v′ = wo ê3 × v = −wov2 ê1 + wov1 ê2 , (50)

where we have used the identities:

−ê1 = ê3 × ê2 , ê2 = ê3 × ê1 .

Equation (50) has a striking formal similarity with the well-
known expression in phasor-domain where the derivative is
given by ȷ wo, where ȷ is the imaginary unit. As a matter of
fact, in R2, the cross (wedge) vector is isomorphic to complex
numbers. Thus, one can define the following correspondences:

ê1 ⇒ 1 ,

ê2 ⇒ ȷ ,

wo[ê3×] ⇒ ȷ wo ,

(51)

which leads to rewrite the vector v as the well-known phasors,
namely v̄ = v1 + ȷ v2. We note also that, in two dimensions,
|ω| = wo hence the azimuthal frequency coincides with the
well-known angular frequency of circuit analysis and with
the instantaneous frequency as commonly defined in time-
frequency analysis and signal processing based on analytic
signals [28], [29].

Noteworthy, this observation can be generalized for any
signal u(t) for which the Hilbert transforms H[u(t)] exists.
With this assumption, the analytic signal associated with u(t)
is the following complex quantity:

ū(t) = u(t) + jH[u(t)] = u(t) + jû(t) , (52)
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the instantaneous frequency of which is defined as [28]:

ϕ′(t) =
û′(t)u(t)− u′(t)û(t)

u2(t) + û2(t)
, (53)

where

ϕ(t) = arctan

(
û(t)

u(t)

)
(54)

is the phase angle of ū(t). Using the approach proposed in
this work, on the other hand, we define the vector:

u(t) = u(t) e1 + û(t) e2 + 0 e3 , (55)

which leads to:

ρ =
u′u+ û′û

u2 + û2
, ω =

û′u− u′û

u2 + û2
e3 , ξ = 0 , (56)

where the time dependency has been omitted for simplicity.
Both formulations, thus, leads to the same expression for the
instantaneous frequency, i.e., ϕ′ = |ω|. However, the proposed
vector-based approach is more general as it allows defining the
quantities ρ and ξ and is not limited to two dimensions.

C. Three-Phase AC Voltages

In this section, we consider a three-phase AC system.
A possible approach is to utilize the same coordinates that
we have considered for the single-phase AC voltage of the
previous example. This approach is the one commonly utilized
in circuit analysis. In this section, however, we show that
choosing as coordinates the voltages of each phase leads to
interesting results. Hence, we define the voltage vector as:

v = va e1 + vb e2 + vce3 . (57)

Let us first consider the case of voltages represented by a
single harmonic:

va = Va sin(θa) ,

vb = Vb sin(θb) ,

vc = Vc sin(θc) .

(58)

The expressions of ρ, ω and ξ for (58) are:

ρ =

∑
i V

2
i θ

′
i sin(2θi) + ViV

′
i (1− cos(2θi))

v2
, (59)

ω =

∑
ijk(rjk + ujk) ei

v2
, (60)

ξ =
v
∑

i(pi sin(θi) + qi cos(θi))ωi∑
jk(rjk + ujk)2

, (61)

where i ∈ {a, b, c}, ijk ∈ {abc, bca, cab}, jk ∈ {bc, ca, ab}
and:

v =
√∑

i V
2
i (1− cos(2θi)) ,

rjk = (VjV
′
k − VkV

′
j ) sin(θj) sin(θk) ,

ujk = VjVk(θ
′
k sin(θj) cos(θk)− θ′j sin(θk) cos(θj)) ,

pi = ViV
′′
i + (V ′

i )
2 − Vi(θ

′
i)

2 ,

qi = V ′
i θ

′
i − Viθ

′′
i .

The following remarks are relevant.

Remark 1: In general, ρ, ω and ξ depend on the time
derivatives of both the magnitudes and the phase angles of
the three-phase voltages. This result is counter-intuitive. In
the common understanding, in fact, the angular frequency is
defined as the time derivative of the sole phase angle of the
voltage (see [31]). The conventional expression of the angular
frequency is obtained if V ′

i = 0. This result reiterates that the
common definition of “frequency” is, in effect, a special case
of the framework proposed in this paper.

Remark 2: It is possible to have ρ = 0 and ω ̸= 0 (for
example, the obvious case of balanced and stationary three-
phase voltages, which is illustrated below) but also ρ ̸= 0 and
ω = 0 (for example a balanced voltage with V ′

i ̸= 0).
Remark 3: The torsional frequency ξ is non-null if and

only if ω ̸= 0. This is consequence of the expression of the
torsion given in (25). The condition ξ ̸= 0 holds for V ′′

i ̸= 0
and/or θ′′i ̸= 0.

Remark 4: A question might arise on why the base
considered in Section V-B for the single-phase AC system
is not also utilized for the three-phase system. One can,
of course, consider each phase of the three-phase system
separately, effectively considering each phase as a single-
phase system as in the previous example. This is the common
approach in three-phase circuit analysis based on phasors.
However, in this and in the following examples, the three-
phase voltages are assumed to form a three-dimensional vector.
It is relevant to note that, since ρ, κ and τ are geometric
invariants, it does not matter which coordinates one chooses
as long as these coordinates form a complete basis for the
system.

Stationary Voltages: Assuming that the voltage is station-
ary with constant angular frequency wo, the three components
of the vector are:

va = Va sin(wot+ θao) ,

vb = Vb sin(wot+ θbo) ,

vc = Vc sin(wot+ θco) ,

(62)

where Vi is the voltage magnitude of phase i; and θio denotes
the voltage angle of phase i at t = 0 s. Let wo = 100π rad/s,
θao = 0 rad. Next, we consider relevant special cases of (58).

Positive and negative sequence voltages: From (59)-(61),
one has for the stationary positive sequence with Va = Vb =
Vc = const. and θbo = −θco = −2π/3 rad:

ρ = ξ = 0 , ω =
wo√
3
(e1 + e2 + e3) .

Analogously, the stationary negative sequence, namely Va =
Vb = Vc = const. and θbo = −θco = 2π/3 rad, leads to:

ρ = ξ = 0 , ω = −wo√
3
(e1 + e2 + e3) .

Hence, for the stationary positive and negative sequences, the
time derivative operator (30) becomes:

Dv
t =

d

dt
∓ wo√

3
[(e1 + e2 + e3)×] , (63)

and, as in the example of Section V.B, ω = |ω| = wo, namely
the azimuthal and angular frequencies coincide.
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Fig. 1: E0-E2: Three-phase AC voltage components, and geometric invariants ρ, ω and ξ.
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Fig. 2: Three-phase voltage in the space (va, vb, vc), E0-E2.

Unbalanced voltage: Unbalanced voltages are character-
ized by Va ̸= Vb ̸= Vc and/or θbo ̸= −θco ̸= −2π/3 rad.
Then, assuming that the voltage magnitudes and phase shifts
are constants, from (59)-(61), one has:

ρ =
wo

∑
i V

2
i sin(2θi)

v2
, ξ = 0 ,

ω =
wo

∑
ijk VjVk sin(θj − θk)ei

v2
.

In this case, thus, the components of the time derivative in
(28) depend on the parameters of the voltage.

Zero-sequence voltage: This example allows us dis-
cussing the issue of the choice of the basis for the voltage
vector. A zero-sequence voltage is composed of three equal
AC voltages. In this case, thus, we cannot utilize the same
coordinates we have used in the previous two examples,
namely (va, vb, vc), as these are linearly dependent and do
not form a basis. One has to proceed as discussed in Section
V-B for a single-phase AC voltage, for which ω = wo e3.
Thus, when considering three-phase voltages, one should thus

first remove the zero-sequence from the voltage signals. This
is common practice, anyway, for the zero-sequence to be
generally treated separately or simply just removed from the
positive and negative ones in power system measurements and
protections.

Next, we illustrate (62) through the following examples.

E0 : Va = Vb = Vc = 12 V ,

θbo = −θco = −2π/3 rad .

E1 : Va = 12 V , Vb = 8 V , Vc = 12 V ,

θbo = −θco = −2π/3 rad .

E2 : Va = Vb = Vc = 12 V ,

θbo = −2π/3 rad , θco = 1.5π/3 rad .

Figure 1 shows the phase voltages as well as the symmetric
component of the geometric frequency (ρ), the Euclidean norm
of the vector component (ω), and the torsional frequency (ξ)
for examples E0 to E2. Figure 2 illustrates the curve formed
by the three-phase voltage in the space (va, vb, vc). Notice that
ξ = 0 holds for the three cases. This is consistent with the
fact that each curve in Fig. 2 lies in a plane.

D. Three-Phase AC Voltages with Harmonics

In this section, we consider the case of three-phase voltages
with harmonics. The conventional Fourier analysis define a
basis that consists of as many dimensions as harmonics. While
the proposed approach can be also utilized in an arbitrary
n-dimensional space, we illustrate the consequences of the
proposed approach in the same three-dimensional space we
have utilized in the previous section.

Let the voltage vector in (57) also include a harmonic



8

0.000 0.005 0.010 0.015 0.020
Time [s]

−20

−10

0

10

20
V

ol
ta

ge
[V

]

va

vb

vc

(a) E3: voltage components

0.000 0.005 0.010 0.015 0.020
Time [s]

−20

−10

0

10

20

V
ol

ta
ge

[V
]

(b) E4: voltage components

0.000 0.005 0.010 0.015 0.020
Time [s]

−20

−10

0

10

20

V
ol

ta
ge

[V
]

(c) E5: voltage components

0.000 0.005 0.010 0.015 0.020
Time [s]

−1

0

1

ρ
[p

u
(r

ad
/s

)]

E3

E4

E5

(d) E3-E5: ρ

0.000 0.005 0.010 0.015 0.020
Time [s]

1

2

ω
[p

u
(r

ad
/s

)]

(e) E3-E5: ω

0.000 0.005 0.010 0.015 0.020
Time [s]

−10

−5

0

5

10

ξ
[p

u
(r

ad
/s

)]

(f) E3-E5: ξ

Fig. 3: Three-phase voltage components, and geometric invariants ρ, ω and ξ, E3-E5.

voltage component. Then, the three-phase voltage becomes:

va = Vasin(wot+ θao) + Va,hsin(hwot+ θao,h) ,

vb = Vbsin(wot+ θbo) + Vb,hsin(hwot+ θbo,h) ,

vc = Vcsin(wot+ θco) + Vc,hsin(hwot+ θco,h) ,

(64)

where Vi,h is the magnitude of the h-th harmonic of phase i;
θio,h is the angle of the h-th harmonic of phase i at t = 0 s.
Let Va = Vb = Vc = 12 V, θbo = −θco = −2π/3 rad. For the
sake of example, we consider the following cases of (64): E3,
balanced voltage; E4, phase imbalance in the harmonic; E5,
magnitude imbalance in the harmonic. The following values
are used.

E3 : Va,11 = Vb,11 = Vc,11 = 0.5 V ,

θbo,11 = −θco,11 = −2π/3 rad .

E4 : Va,11 = Vb,11 = Vc,11 = 0.5 V ,

θbo,11 = −2.7π/3 rad θco,11 = 2.7π/3 rad .

E5 : Va,11 = 0.5 V , Vb,11 = 0.9 V , Vc,11 = 1.3 V ,

θbo,11 = −θco,11 = −2π/3 rad .

The phase voltages for cases E3-E5 as well as the trajec-
tories of ρ, ω and ξ are shown in Fig. 3, while the curve
that the vector v forms in the (va, vb, vb) space is illustrated
for each case in Fig. 4. For the balanced case, i.e. E3, a
plane curve is obtained which implies a null torsion, whereas
the curves in E4 and E5 are three-dimensional and thus the
torsion in these cases is non-zero. It is relevant to note that
the proposed approach, differently from Fourier analysis or
any other approach based on the projections of the signal
on a kernel function (e.g., the periodic small-signal stability
analysis [32], wavelets and the Hilbert-Huang transform [33]),
does not need to increase the size of the basis to take into
account harmonics.

va [V]

−10 −5
0

5
10

v b
[V

]

−8
−6
−4
−2

0
2

4
6

8

v c
[V

]

−10

−5

0

5

10

E3

E4

E5

Fig. 4: Three-phase voltage in the (va, vb, vc) space, E3-E5.

E. Three-Phase AC Voltages with Time-Variant Angular Fre-
quency

In the previous section, we have discussed the difference
between the Fourier approach and the proposed geometric
approach. The latter utilizes a space that has always same
dimensions regardless the number of harmonics present in the
voltage. In this section, we further illustrate the benefit of this
frugality of dimensions. We consider in fact a three-phase
voltage with time-varying angular frequency. In this case,
the Fourier transform would require a basis with infinitely
many dimensions as the angular frequency varies continuously.
The geometric approach, on the other hand, retains the three
dimensions.

Let us consider that each component of the voltage vector
in (57) has a time-varying frequency wi, i = {a, b, c}. Then,
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Fig. 5: Geometric frequency components and torsional frequency, E6-E8.

the three AC voltage components are:

va = Va sin(wot+ θa(t) + θao) ,

vb = Vb sin(wot+ θb(t) + θbo) ,

vc = Vc sin(wot+ θc(t) + θco) .

(65)

Let Va = Vb = Vc = 12 V, wo = 100π rad/s, θbo = −θco =
−2π/3 rad. As an example, we consider the following cases of
(65): E6, balanced θi; E7, frequency imbalance in θi; and E8,
magnitude imbalance in θi. The following values are assumed.

E6 : θa = θb = θc = π sin(0.4πt) .

E7 : θa = θb = π sin(0.4πt) ,

θc = π sin(0.44πt) .

E8 : θa = θb = π sin(0.4πt) ,

θc = 1.1π sin(0.4πt) .

Example E6 is representative of the transient following a
contingency in a power system, where the oscillations of the
phase angles of the voltages are due to the electro-mechanical
swings of the synchronous machines. On the other hand,
examples E7 and E8 do not represent a situation that can occur
in a power system but are nevertheless relevant to show the
effects of the torsional frequency.

Figure 5 shows ρ, ω and ξ for cases E6-E8. In the bal-
anced case, i.e. E6, the three-phase voltages show the same
frequency variation and null ρ and ξ. The three-dimensional
representation of v in the space va-vb-vc is shown in Figs. 6
and 7. For E7 and E8, the period of the voltage is varying
with time yet not in the same way in all three phases, thus
leading to the curves shown in Figs. 6 and 7.

Figure 8 shows how the magnitude of the rate of change
of the vector frequency (|ω′|) compares to the magnitude of
its symmetric component, i.e. |ηω| (see equation (36)) for the
three examples E6-E8. These two quantities are equal only
at the time instants when the torsion is null or, equivalently,

when ξ = 0 (see Fig. 5f). It is also interesting to observe how
unbalanced harmonics lead to large variations of |ω′|.
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Fig. 8: Magnitudes of ω′ and its symmetrical component ω′ = |ηω|, E6-E8.

F. Park Transform

In this final example, we consider the time derivative of the
voltage in the Park reference frame. Let us consider a voltage
vector in the dqo coordinates:

v = vd ed + vq eq + vo eo . (66)

The time derivative of this vector in the “inertial” reference is
given by:

v′ = (v′d − wdqvq) ed + (v′q + wdqvd) eq + v′o eo , (67)

where wdq is the angular speed of the Park reference frame
and we have assumed a choice of the dqo-axis such that e′d =
wdqeq, e′q = −wdqed, and e′o = 0 [1].

The time derivative in the inertial reference in (67) is
composed of two parts, namely the derivative in the rotating
dqo-axis frame plus the effect of rotation:

v′ = v̂′ + r × v , (68)

where:
v̂′ = v′d ed + v′q eq + v′o eo , (69)

and
r = wdq eo . (70)

Next, we apply (28) and show that the proposed approach
leads to the same results as (67) but with a different structure
of the components of v′ with respect to (68). The quantities
ρ and ω are:

ρ =
vdv

′
d + vqv

′
q + vov

′
o

v2
, (71)

and

ω =
vqv

′
o − vov

′
q − wdqvovd

v2
ed+

vov
′
d − vdv

′
o − wdqvovq
v2

eq+

vdv
′
q − vqv

′
d + wdq(v

2
d + v2q)

v2
eo ,

(72)

where v2 = v2d + v2q + v2o . Although requiring some tedious
algebraic manipulations, it is not difficult to show that, in fact,
ρv + ω × v is equal to the right-hand side of (67). On the
other hand, it is straightforward to observe that:

v̂′ ̸= ρv , r × v ̸= ω × v , (73)

i.e., v̂′ is not equal to the symmetric component of the time
derivative and the term r×v is not equal to the antisymmetric
component of the time derivative.

A relevant case is for vo = 0, namely balanced conditions,
which leads to:

ρ =
vdv

′
d + vqv

′
q

v2
, ω =

vdv
′
q − vqv

′
d + wdqv

2

v2
eo , (74)

where v2 = v2d+v2q. We note that ρ = v′/v, as expected, and:

vdv
′
q − v′dvq

v2
=

d

dt
arctan

(
vq
vd

)
= ∆ω , (75)

which is the deviation of the angular frequency of v with
respect to wdq. Hence the inertial- and rotating-frame time
derivatives of the voltage can be written as:

v′ = ρv + (wdq +∆ω) eo × v , (76)

and:
v̂′ = ρv +∆ω eo × v . (77)

The following remarks are relevant.
Remark 5: The only case for which ρv = v̂′ and r×v =

ω×v is if the angular speed of the Park transform is the actual
frequency of v. In this case, in fact, ∆ω = 0. This result is
consistent with the commonly-used Park-Concordia model of
the synchronous machine [34].

Remark 6: The Clarke transform can be viewed as a
special case of the Park transform, with wdq = 0. In this
case (68) leads to v′ = v̂′. This result is consistent with (76).

Remark 7: In stationary conditions, i.e., for v′d = v′q = 0,
(76) leads to the same expression as (50), thus confirming that
balanced stationary three-phase voltages are equivalent to a
single-phase phasor.

G. IEEE 39-Bus System

This example shows the application of the proposed for-
mulas to estimate ω, ρ, and ξ at a bus of a power system
following a contingency. To this aim, we use the model
of the IEEE 39-bus system for Electro-Magnetic Transient
(EMT) simulations provided by DIgSILENT PowerFactory.
The system model is based on the original IEEE 39-bus
benchmark network, which has been modified to capture the
behavior during EMTs of the power network, namely, the
frequency dependency of transmission lines and the non-linear
saturation of transformers.
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The system is numerically integrated assuming a phase-to-
phase fault between phases a and b at terminal bus 3 of the
system at t = 0.2 s. The fault is cleared at t = 0.3 s. The
integration time step considered is 10−5 s. The phase voltages
at bus 26 following the contingency are shown in Fig. 9,
while the curve formed by the three-phase voltage in the space
(va, vb, vc) is illustrated in Fig. 10. Figure 11 shows ω, ρ, and ξ
following the contingency, where first-order filtering has been
applied to smooth the numerical noise in the calculation of the
voltage vector time derivatives. Before the occurrence of the
fault, the three phases are balanced and thus, the corresponding
part of the curve in Fig. 10 is circular and lies in a plane.
The same holds after the fault clearance. Results also indicate
that before the occurrence and after the clearance of the fault,
both ρ and ξ are null, which is consistent to the discussion
of Section V-E (e.g., example E6). On the other hand, the
voltage phases are unbalanced during the fault, which gives
rise to the non-circular and non-planar sections observed in
Fig. 10. For this part, both ρ and ξ are non-zero as shown
in Fig. 11. This is again consistent with Section V-E and in
particular with the discussion of example E8. Furthermore, ω
accurately captures the primary frequency response at bus 26
following the contingency (see Fig. 11b).

Finally, for the sake of comparison, we mention that the
differences of the IEEE 39-bus system with respect to the
results of E8 are that (i) the frequency oscillation is damped
and reaches a new steady state condition, whereas this does
not hold for E8, and (ii) the imbalance occurs only for few
voltage cycles, whereas in E8 voltages are unbalanced during
the whole simulation, which is the reason why the curve in
Fig. 10 does not appear like a compact three-dimensional
object as is the case in Fig. 7.
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Fig. 9: Three-phase voltage at bus 26, IEEE 39-bus system.

VI. CONCLUSIONS

The paper elaborates on the geometrical interpretation of
electric quantities and deduces several expressions that link
the time derivatives of the voltage, current and frequency
in electrical circuits with the Frenet frame. Among these
expressions, we mention in particular (28) and (37). Equation
(28) indicates that the time derivative of the voltage (and
the current) is composed of two parts, one symmetric, that
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Fig. 10: Three-phase voltage at bus 26 in the space (va, vb, vc), IEEE
39-bus system.

depends only on the magnitude, and one antisymmetric that
depends on the “rotation” of the quantity itself. Equation (37)
shows that the time derivative of the vector frequency is more
complex than the common notion of RoCoF and includes a
“rotational” and a “torsional” component. The latter is defined
in this paper for the first time. It is interesting to note that
the antisymmetric component of the RoCoF may affect the
implementation and/or performance of existing controllers.
Since the proposed approach allows separating the symmetric
and antisymmetric terms, it appears as a useful tool for the
study of power system transients and the design of controllers.
More in general, we believe that the proposed approach may
find relevant applications in estimation, control and stability
analysis of power systems.

The proposed theory is certainly more complex than the
current conventional approach based on phasors. However, it
shows added values from the theoretical point of view, as
follows.

• It is a generalization of the conventional approach. The
conventional approach, in fact, appears to be a special
case of the proposed theory.

• It is an example of interdisciplinary approach. Differential
geometry and the Frenet frame, in fact, were originally
developed for mechanical systems. Their applications,
under certain hypotheses, to electrical circuits appears as
an interesting advance which paves the way to several
further developments.

An interesting byproduct of the latter point is that the
proposed theory allows “visualizing” electrical quantities. This
is important, as, in the experience of the first author, students
always struggle with the lack of visual aid when studying
circuit theory. Such a support is a given in mechanical en-
gineering. Thus, the ability to re-utilize well-known concepts
such as curvature and torsion also adds a didactic value to the
proposed approach.

We anticipate several future work directions. Among these,
we mention the development of a geometric framework for
circuit analysis; the applications of the formulas to estimate
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Fig. 11: Geometric invariants ρ, ω and ξ at bus 26, IEEE 39-bus system.

unbalanced conditions in three-phase circuits as well as to
circuits with more than three phases using Cartan’s extensions
of the Frenet framework (see, e.g., [35]); and the development
of active controllers to reduce the effect of harmonics and
imbalances.

APPENDIX

In this appendix, we prove the identity n = ωv. From (20)
on has:

ω =
|ω|
v2

=
|v × v′|

v2
. (78)

Let us focus on the term |v × v′|. This can be written as:

|v × v′| =
√
(v × v′) · (v × v′) . (79)

From the following identity of the triple scalar product:

a · b× c = b · c× a , (80)

equation (79) can be rewritten as:

|v × v′| =
√
v · v′ × (v × v′) . (81)

Then, from the following identity of the triple vector product:

(a× b)× c = (a · c) b− (b · c)a , (82)

equation (81) can be rewritten as:

|v × v′| =
√

v · [(v′ · v′)v − (v′ · v)v′] . (83)

From (20) and (18), the previous expression is equivalent to:

|v × v′| =
√

(v′ · v′)(v · v)− (v · v′)2

=
√

|v′|2v2 − ρ2v4 ,
(84)

and, hence, (78) becomes:

ω =

√
|v′|2 − ρ2v2

v
, (85)

which, recalling the definition of n given in (23), demonstrates
that n = ωv and, hence, n = ω×v. From this relationship and
the properties of the vectors of the Frenet frame, the following
relationships follow:

v =
n× ω

ω2
, ω =

v × n

v2
. (86)
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