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Abstract— The paper presents the theoretical foundation and
practical implementation aspects of Fractional Order Controllers
(FOCs) for power system applications. With this aim, the paper
provides a comprehensive mathematical background on the sta-
bility analysis of dynamic systems with inclusion of fractional or-
der derivatives and discusses their software implementation based
on the Oustaloup’s Recursive Approximation (ORA) method.
Then the paper illustrates a variety of examples of ORA-based
FOCs, namely, automatic generation control of synchronous
machines; frequency control of a converter-interfaced energy
storage system; and voltage control through a static synchronous
compensator. The WSCC 9-bus test system and a realistic 1,479-
bus model of the Irish transmission system are employed to
test and compare the examined FOCs with their integer-order
versions.

Index Terms— Fractional Order Controllers (FOCs), power
system stability, Oustaloup’s Recursive Approximation (ORA),
frequency regulation, voltage regulation.

I. INTRODUCTION

A. Motivation

Control schemes based on fractional calculus have gained
momentum in power system applications due to their ability to
enhance performance and increase the stability margin, under
the presence of topological changes, parameter uncertainty and
noise. This paper provides an in-depth study on Fractional
Order Controllers (FOCs) for power system applications.

B. Literature Review

Fractional calculus is the analysis of non-integer order
differentials and integrals. Although the first discussion on
derivatives with fractional order dates back to Leibniz [1],
major studies on fractional calculus started with Liouville
[2]. The application of fractional calculus in control was
introduced with the definition of the ideal cutoff characteristic
by Bode [3] and the first systematic study of the frequency
response of FOCs was done by Oustaloup [4]. In [5] and
[6], Podlunby proposed the Fractional Order PID (FOPID)
controller and provided a comprehensive analysis of fractional
systems with applications to automatic control, respectively.
FOCs have been applied to various engineering fields, e.g. heat
diffusion [7] and robotic time-delay systems [8].
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The potential of FOCs for power system applications has
not been discussed until very recently. Applications include au-
tomatic voltage regulation of synchronous machines [9]–[11];
load frequency control [12], [13]; damping control [14]; and
voltage control of distributed energy resource systems [15].
These works mainly focus on the tuning of FOPID controllers
through heuristic algorithms, such as particle swarm [9],
chaotic multi-objective [11], and imperialist competitive al-
gorithm [12]. Analytical methods employ frequency response
criteria such as the desired gain crossover frequency [13].

From a practical and simulation point of view, fractional
dynamics are typically approximated using appropriate ra-
tional order transfer functions. Although various techniques
have been proposed to define such transfer functions [16], the
most commonly utilized continuous method is the Oustaloup’s
Recursive Approximation (ORA) [17]. Therefore, the ORA is
the method considered in this paper. The works cited above
focus on applications and rely, for the implementation of
FOCs, on proprietary software tools which are utilized as a
black-box. This approach is indeed fostered by the availability
of several software tools for the design and simulation of
FOCs. We cite, for example, the Matlab toolboxes CRONE
[18], Ninteger [19], and FOMCON [20].

C. Contributions

The main goal of this paper is to provide a systematic
study of FOCs for power system applications. The specific
contributions of the paper are as follows:

• A theory on how to carry out small-signal stability
analysis of power systems with exact fractional dynamics,
as opposed to the approximated implementations that
have been proposed in the literature.

• A step-by-step analytical study on the modelling and
parameters selection of ORA-based FOCs, as opposed
to standard approaches that are based on black-box
applications of proprietary software tools for fractional
dynamics.

• A systematic analysis of FOC applications to power
system controllers. These include integral FOC for Au-
tomatic Generation Control (AGC); lead-lag FOC for
frequency regulation of an Energy Storage System (ESS);
and multiple PI FOCs for voltage regulation provided by
a STATic synchronous COMpensator (STATCOM). The
dynamic response of these controllers is compared with
their conventional Integer Order (IO) versions.



Finally, the impact of FOC is evaluated in the context of a
large-scale, realistic model of the all-island Irish transmission
system.

D. Organization

The remainder of the paper is organized as follows. Sec-
tion II outlines the theory of fractional calculus. Section III
discusses the stability of power systems with inclusion of
FOCs. Section IV focuses on the modelling, computer imple-
mentation and tuning of ORA-based FOCs. The case studies
are presented in Sections V and VI. Conclusions are drawn in
Section VII.

II. ESSENTIALS OF FRACTIONAL CALCULUS

Fractional calculus deals with the problem of extending the
differentiation and integration operators dn/dtn,

∫ t
0
dn(τ), n ∈

N, for real (or complex) number powers. There exist several
approaches that address this problem.

A precise formulation of fractional calculus is given by the
Riemann-Liouville (R-L) definition. Consider a function φ :
[0,∞) → R. The idea behind the R-L definition is to first
consider the n-fold integration of φ(t) and then extend n ∈ N
to any γ ∈ R+. In its derivative form, the R-L definition reads
[21]:

φ(γ)(t) =
1

Γ(µ− γ)

dµ

dtµ

(∫ t

0

φ(τ)

(t− τ)γ−µ+1
dτ
)
, (1)

where γ, µ − 1 < γ < µ, µ ∈ N, is the fractional order; and
φ(γ)(t) = dγφ/dtγ . The Laplace transform of (1) is:

L{φ(γ)(t)} = sγΦ(s)−
µ−1∑
j=0

sjφ(γ−j−1)(0) , (2)

where s ∈ C. Equation (2) requires the knowledge of the frac-
tional order initial conditions φ(γ−j−1)(0), j = 0, 1, . . . , µ−1.
This raises an issue for engineering systems since, currently,
only integer order initial conditions are well understood and
known for physical variables. Other properties of the R-L
definition are also counter-intuitive in the sense of classical
differentiation. For example, the R-L derivative of a constant
function is typically unbounded at t = 0 [5].

With the aim of meeting the requirements of known physical
variables and systems, (1) was revisited by Caputo [22].
Caputo’s definition of φ(γ)(t) reads:

φ(γ)(t) =
1

Γ(µ− γ)

∫ t

0

φ(µ)(τ)

(t− τ)γ−µ+1
dτ . (3)

The Laplace transform of (3) is:

L{φ(γ)(t)} = sγΦ(s)−
µ−1∑
j=0

sγ−j−1φ(j)(0) . (4)

Equation (4) requires the knowledge of the initial conditions
φ(j)(0), j = 0, 1, . . . , µ − 1, which in this case are of
integer order. This property is crucial for the solution of initial
value problems. In fact, for the purpose of fractional control,
that is of concern here, one needs to use a definition with
integer order initial conditions. However, in power system

literature, many papers follow R-L and/or Grünwald-Letnikov
definitions [9], [10], [14]. This work utilizes Caputo’s def-
inition of fractional derivative given in (3), which is more
consistent for control applications and follows the properties of
differentiation in the classical sense. For example, the Caputo’s
fractional derivative of a constant function is zero.

There are several other definitions of fractional deriva-
tives/integrals and choosing the appropriate one depends on the
application. For example, the Grünwald-Letnikov’s derivative
is relevant for the numerical solution of fractional differential
equations. It is important to emphasize that the theory of
fractional calculus applicable to the stability analysis and
control of physical dynamical systems is an active research
topic and yet to be fully understood. Recent efforts have
addressed issues related to Caputo’s formulation, for example
its singular kernel for t = τ [22], [23].

III. MODELLING AND STABILITY OF POWER SYSTEMS
WITH INCLUSION OF FRACTIONAL DERIVATIVES

This section discusses the modelling and stability of power
systems with inclusion of FOCs. Since a general theory of the
stability of nonlinear fractional differential equations is not
available, we proceed as follows. This section considers the
conditions for the stability of linear (or linearized) fractional
algebraic-differential equations. Such conditions help design
the FOCs discussed in Section IV. However, power system
models are non-linear. For this reason, we check the design
of FOCs by solving numerical time domain simulations of the
fully-fledged nonlinear model of the system and its controllers
in the case studies presented in Sections V and VI.

A. Power System Model

The power system model for rotor angle and voltage stabil-
ity studies consists of a set of non-linear Differential Algebraic
Equations (DAEs), as follows:

x′(t) = f(x,y,u, t)

0m,1 = g(x,y,u, t) ,
(5)

where f (f : Rn+m+p → Rn), g (g : Rn+m+p → Rm) are
the differential and algebraic equations; x, x ∈ Rn, and y,
y ∈ Rm, are the state and algebraic variables, respectively;
u, u ∈ Rp, are controlled inputs; and 0i,j , 0i,j ∈ Ri×j , is
the zero matrix. For sufficiently small disturbances, (5) can be
linearized around an equilibrium point (x0,y0,u0). In matrix
form, the linearized system is as follows:[

In 0n,m

0m,n 0m,m

][
∆x

∆y

]′
=

[
fx fy
gx gy

][
∆x

∆y

]
+

[
fu
gu

]
∆u ,

where ∆x = x − x0, ∆y = y − y0; ∆u = u − u0; fx,
fy , fu, gx, gy , gu, are the Jacobian matrices evaluated at
(x0,y0,u0). Using the notation

E =

[
In 0n,m

0m,n 0m,m

]
, A =

[
fx fy
gx gy

]
, B =

[
fu
gu

]
,

where In, In ∈ Rn×n, is the n× n identity matrix, we have

E∆x̂′ = A∆x̂+B∆u , (6)
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where ∆x̂ = [∆x ∆y]T .
Let the vector of the system output measurements w, w ∈

Rq×1, be:
w = C∆x̂+D∆u , (7)

where C ∈ Rq×(n+m), D ∈ Rq×p. Then, a Multiple-Input,
Multiple-Output (MIMO) FOC for the system (6)-(7), can be
described by a set of fractional DAEs as follows:

Ecxc
(γ) = Acxc +Bcw ,

0p,1 = Ccxc +Dcw −∆u ,
(8)

where γ is the controller’s fractional order; xc, xc ∈ Rν , is
the vector of the controller states; Ec, Ac ∈ Rν×ν , Bc ∈
Rν×q , Cc ∈ Rp×ν , Dc ∈ Rp×q . It is relevant to mention
that there are FOCs that introduce multiple, distinct fractional
orders. Without loss of generality, we have chosen here to keep
the analysis the simplest possible. Combining (6), (7) and (8)
yields the closed-loop system representation. In matrix form: E 0n,ν 0n,p

0ν,n 0ν,ν 0ν,p

0p,n 0p,ν 0p,p


∆x̂

xc

∆u


′

+

0n,n 0n,ν 0n,p

0ν,n Ec 0ν,p

0p,n 0p,ν 0p,p


∆x̂

xc

∆u


(γ)

=

 A 0n,ν B

BcC Ac BcD

DcC Cc DcD − Ip


∆x̂

xc

∆u

 ,

or,
Mξ′ +Mγξ

(γ) = Aclξ , (9)

where ξ = [∆x̂ xc ∆u]T , and

M =

 E 0n,ν 0n,p

0ν,n 0ν,ν 0ν,p

0p,n 0p,ν 0p,p

 , Mγ =

0n,n 0n,ν 0n,p

0ν,n Ec 0ν,p

0p,n 0p,ν 0p,p

 ,

Acl =

 A 0n,ν B

BcC Ac BcD

DcC Cc DcD − Ip

 .

B. Closed-loop System Stability

We study the stability of (9). With this aim, we first provide
the following property of Caputo’s fractional derivative [24]:
Proposition 1. Let φ(t), φ(t) ∈ C1[0, T ]n×1 for some T > 0.
Then:

[φ(a)(t)](b) = [φ(b)(t)](a) = φ(a+b)(t) , (10)

where a, b ∈ R+, and a+ b ≤ 1.
Note that (10) does not hold for the R-L derivative.
We rewrite (9) as:

Mξ(γ+β) +Mγξ
(γ) = Aclξ , (11)

where γ + β = 1. Adopting the notation:

ψ1 = ξ , ψ2 = ξ(γ) ,

we obtain ψ(γ)
1 = ξ(γ) = ψ2. Making use of (10), yields

ψ
(β)
2 = ξ(γ+β). Substitution to (11) gives:

Mψ
(β)
2 +Mγψ2 = Aclψ1 ⇒

Mψ
(β)
2 = Aclψ1 −Mγψ2 . (12)

Equation (12) can be rewritten as:[
Iρ 0ρ,ρ

0ρ,ρ M

][
ψ

(γ)
1

ψ
(β)
2

]
=

[
0ρ,ρ Iρ

Acl −Mγ

][
ψ1

ψ2

]
, (13)

or, equivalently,
M̃ψ∆ = Ãψ , (14)

where

M̃ =

[
Iρ 0ρ,ρ

0ρ,ρ M

]
, Ã =

[
0ρ,ρ Iρ

Acl −Mγ

]
,

ρ = n + ν + p ; ψ = [ψ1 ψ2]T ; and ψ∆ = [ψ
(γ)
1 ψ

(β)
2 ]T .

Theorem 1. Consider system (14). Then its matrix pencil is
given by [

sγIρ 0ρ,ρ

0ρ,ρ sβIρ

]
M̃ − Ã (15)

Proof. Let L{ψ(t)} = Ψ(s). Using Caputo’s fractional
derivative, by applying the Laplace transform L as defined
in (4) for µ = 1 into (14), we obtain

M̃L{ψ∆(t)} = ÃL{ψ(t)},
Furthermore:

M̃L
{[ψ(γ)

1

ψ
(β)
2

]}
= ÃL{ψ(t)} ,

or, equivalently,

M̃

[
sγL{ψ1(t)} − sγ−1ψ1(0)

sβL{ψ2(t)} − sβ−1ψ2(0)

]
= ÃL{ψ(t)} ,

or, equivalently,

M̃

[
sγL{ψ1(t)}
sβL{ψ2(t)}

]
− M̃

[
sγ−1ψ1(0)

sβ−1ψ2(0)

]
= ÃL{ψ(t)} ,

or, equivalently,

M̃

[
sγIρ 0ρ,ρ

0ρ,ρ sβIρ

][
L{ψ1(t)}
L{ψ2(t)}

]
−

M̃

[
sγ−1Iρ 0ρ,ρ

0ρ,ρ sβ−1Iρ

][
ψ1(0)

ψ2(0)

]
= ÃΨ(s) ,

or, equivalently,(
M̃

[
sγIρ 0ρ,ρ

0ρ,ρ sβIρ

]
− Ã

)
Ψ(s) =[

sγ−1Iρ 0ρ,ρ

0ρ,ρ sβ−1Iρ

]
ψ(0) .

The proof is complete.
The eigenvalues of the matrix pencil (15) provide insight on
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the stability of system (14), or equivalently, of system (9). We
finally provide the following proposition, see [25]:

Proposition 2. Consider system (14). If γ̃ =
min {γ, 1− γ}, and λ is an eigenvalue of the pencil (15),
then system (14) is asymptotically stable if all eigenvalues λ
satisfy:

|Arg(λ)| > γ̃
π

2
(rad) . (16)

For linearized systems, as it is the case of power systems,
the condition (16) guarantees stability in a neighborhood of
the operating point utilized to calculate the pencil (15). For
this reason, in the case studies discussed in Sections V and
VI, we utilize numerical integration rather than (16) to check
the stability and the dynamic response of power systems with
inclusion of FOCs.

C. Illustrative Example

We provide an illustrative example on the small-signal
stability analysis of power systems with inclusion of FOCs.
The example is based on the well-known WSCC 9-bus system,
the data of which are provided in [26]. The system consists
of 3 synchronous machines, 6 transmission lines, 3 transform-
ers and 3 loads, modelled as constant power consumption.
Each machine provides primary voltage and frequency control
through an Automatic Voltage Regulator (AVR) and a Turbine
Governor (TG), respectively. The original system model does
not include any fractional dynamics.

Suppose that a FO Power System Stabilizer (PSS) is in-
stalled at the synchronous machine connected at bus 2. The
FO-PSS employed has the following transfer function:

GFOPSS = K
(T1s

γ + 1

T2sγ + 1

)2

,

The controller input is the local rotor speed, while the output
is an additional input to the algebraic equation of the local
AVR reference. The FO-PSS can be written in the form of
(8), where:

Ec =


T2 0 0 0

T1 0 0 0

0 0 T2 0

0 0 T1 0

 , Ac =


−1 0 0 0

−1 1 0 0

0 1 −1 0

0 0 −1 1

 ,

Bc =
[
K 0 0 0

]T
, Cc =

[
0 0 0 1

]
, Dc = 0.

Suppose that T1 = 0.01 s, T2 = 0.22 s, γ = 0.75. Then,
small-signal stability is assessed by calculating the eigenvalues
of (15). If λi is a finite eigenvalue and θi = Arg(λi), then (16)
suggests that the system is stable, if:

|θi| > γ̃
π

2
= 0.393 rad ,

where γ̃ = min {0.75, 0.25} = 0.25. The most critical
eigenvalues of the closed-loop system are shown in Fig. 1,
where the shaded region is unstable. As it can be seen, the
system with the FO-PSS is in this case small-signal stable.
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Fig. 1: WSCC system with FOPSS: most critical eigenvalues. Shaded
is the region of instability.

D. Properties of FOCs

Let us consider the simple FOC with transfer function
Gc(s) = Ksγ . We consider the frequency response of Gc(s),
i.e. its steady-state response to sinusoidal, periodic input
signals. In this case, it is s ∈ I, or s = jω.

Frequency Response: The magnitude and phase of Gc(s)
can be written as follows:

Mag(Gc(s)) (dB) = 20log|Ksγ | = 20γlog(Kω) ,

Arg(Gc(s)) (◦) = Arg(K(jω)γ) = 90γ .
(17)

Hence, Gc(s) has a magnitude Bode plot with constant slope
of 20γ dB/dec, while the phase plot is a horizontal line at 90γ
degrees. The IO versions of Gc(s) are obtained for γ = n,
n ∈ Z. Then, from (17), it is clear that Gc(s) is an extension
of its IO versions in frequency domain. This result is general,
so that all FOCs can be viewed as extensions of the respective
IO ones.

Robustness: FOCs have an inherent property of iso-
damping, which implies that the closed-loop system is robust
against gain uncertainties and variations. Let P (s) be the
transfer function of the open-loop, linearized power system.
Then, the iso-damping property is defined as:∣∣∣∣∣Arg(Gc(jω)P (jω))

dω

∣∣∣∣∣
ω=ωgc

= 0 , (18)

where ωgc is the system gain crossover frequency. (18) indi-
cates that the system maintains its phase margin around ωgc.

IV. OUSTALOUP’S RECURSIVE APPROXIMATION

A. Formulation

The theoretical analysis based on fractional calculus is
essential for a better understanding of “ideal” FOCs and
hence, for a robust FOC design. In practice, however, the
implementation of FOCs is typically done by approximating
the fractional derivatives and integrals with rational transfer
functions. Although this is an important aspect of FOCs imple-
mentation, some studies omit mentioning what approximation
technique and/or parameters they use, effectively forcing the
adoption of a black-box approach. In this paper, we employ the
ORA method, that is arguably the most common continuous
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approximation technique. The generalized ORA of a fractional
derivative of order γ is defined as [21]:

sγ ≈ ωγh
N∏
k=1

s+ ω′k
s+ ωk

, (19)

where ω′k = ωbω
(2k−1−γ)/N
v , ωk = ωbω

(2k−1+γ)/N
v , ωv =√

ωh/ωb; In the above expressions, [ωb, ωh] is the frequency
range for which the approximation is designed to be valid;
N is the order of the polynomial approximation; The term
“generalized” implies that, in (19), N can be either even or
odd [21], while the term “recursive” implies that the values
of ω′k, ωk result from a set of recursive equations [17]. The
block diagram of ORA is shown in Fig. 2.

uin
ω
γ
h

yNy1 y2 yN−1s+ ω
′

1

s+ ω1

s+ ω
′

2

s+ ω2

s+ ω
′

N

s+ ωN

Fig. 2: Oustaloup’s recursive approximation block diagram.

Figure 3 compares the theoretical frequency response of
s−0.7, which is given by (17) for K = 1, with the respective
plots provided by ORAs of different dynamic orders. This
simple example shows the typical behaviour of the ORA: the
approximation is more accurate for higher dynamic orders and
for frequencies closer to the middle of the interval [ωb, ωh].
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Fig. 3: Bode plot of the ORA for different approximation orders N
(γ = −0.7; [ωb, ωh] = [10−3, 103] rad/s).

A final note on (19) is that the ORA of sγ is typically
accurate enough for fractional orders that satisfy 0 ≤ |γ| ≤ 1.
For higher fractional orders, accuracy can be maintained by
implementing sγ as a multiplication of a suitable integer order
block and a fractional order block, as follows:

sγ = snsγ−n, n ∈ Z, (γ − n) ∈ [0, 1] . (20)

B. DAE Model
In time-domain, the ORA can be described by the following

set of explicit DAEs:

χe
′ = Aeχe +Beuin

0 = yN −Ceχe + ωγhuin ,
(21)

where χe = [χe,1 χe,2 · · · χe,N ]T is the ORA state vector;

Ae =


−ω1

ω′2 − ω2 −ω2

ω′3 − ω3 ω′3 − ω3 −ω3

...
...

...
. . .

ω′N − ωN ω′N − ωN · · · ω′N − ωN −ωN

 ;

Be = [ωγh(ω
′
1 − ω1) ωγh(ω

′
2 − ω2) · · · ωγh(ω

′
N − ωN )]

T
;

Ce = [1 1 · · · 1]
T
.

The dimensions of Ae, Be, Ce, are N ×N , N × 1 and
1×N , respectively. An alternative way to describe a dynamic
model is by using a semi-implicit DAE formulation [27]. We
propose the following, semi-implicit form of the ORA:

χ′s,1 = −ω1χs,1 + ωγhuin

χ′s,2 − χ′s,1 = ω′1χs,1 − ω2χs,2
...

χ′s,N − χ′s,N−1 = ω′N−1χs,N−1 − ωNχs,N
−χ′s,N = ω′Nχs,N − yN ,

where χs = [χs,1 χs,2 · · · χs,N ]T is the ORA state vector;
Using matrix notation, we have:

Esz
′ = Asz +Bsuin , (22)

where z = [χs yN ]T and

Es =



1

−1 1

. . .
. . .
−1 1

−1 1

−1 0

 , Bs =



ωγh
0

...
0

0

0

 ,

As =



−ω1

ω′1 −ω2

. . .
. . .

ω′N−2 −ωN−1

ω′N−1 −ωN
ω′N −1

 ,

where the dimensions of Es,As,Bs, are (N + 1)× (N + 1),
(N + 1)× (N + 1) and (N + 1)× 1, respectively. In (21),
the total number of non-zero elements of the coefficient
matrices is Θ(N2), whereas in (22) it is Θ(N). Therefore, the
proposed semi-implicit model is sparser than the explicit one.
In addition, (22) prevents the input uin to propagate through
the equations to the output.

C. Steady State Error

Consider the simple FOC with transfer function Gc(s) =
Ksγ . By approximating sγ from (19), we can write Gc(s) as
follows:

Gc(s) ≈ Kωγh
N∏
k=1

s+ ω′k
s+ ωk

=
c1s

N + c2s
N−1 + · · ·+ cN

d1sN + d2sN−1 + · · ·+ dN
, (23)
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with

cN = Kωγh

N∏
k=1

ω′kKω
γ
hω

N
b ω

(N−γ)
v ,

dN =

N∏
k=1

ωk = ωNb ω
(N+γ)
v ,

(24)

where we have substituted the expressions for ωk and ω′k as
in (19) and

∑N
k=1 = N(N+1)

2 . From (23), one can deduce that
the controller’s unity feedback closed-loop steady state error
e(t→∞) for an arbitrary input R(s) is:

e(t→∞) = lim
s→0

sR(s)

1 +Gc(s)
=

dN
cN + dN

lim
s→0

sR(s)

=
1

K + ωγb
lim
s→0

sR(s) , (25)

where we have substituted ωv =
√
ωh/ωb. The steady state

error in (25) depends on K, ωγb , and the applied input R(s).
Evaluating the controller’s unit step input response yields
R(s) = 1/s and estep(t→∞) = 1/(K + ωγb ). For γ < 0, we
obtain that an ORA-based FO integral controller is not perfect
tracking. This result is not consistent with the theoretical
behaviour of Ksγ , γ < 0, which has estep(t → ∞) = 0.
However, the design of an almost perfect tracking FOC is
possible with appropriate selection of ORA parameters.

D. Parameters Selection

While the value of N is usually constrained due to com-
putational concerns, most studies that consider ORA-based
FOCs in power systems provide a rather arbitrary selection
of the range of frequencies [ωb, ωh]. This section discusses
the tuning of ORA parameters and provides an empirical rule
that simplifies the design of FOCs.

1) Low frequency ωb: A very small ωb reduces the steady
state error in (25). However, a poor choice can significantly
degrade the phase fitting of ORA. An example is shown in
Fig. 4, where ωb is varied from 10−3 to 10−8 rad/s.

2) High frequency ωh: A very high ωh may increase the
system gain margin. Large gains lead to fast response and
stability enhancement, as well as to elimination of steady
state errors. However, increasing excessively the speed of the
system response may trigger closed-loop resonant points. Note
that such resonant points can remain undetected if they stem
from unmodelled high frequency dynamics.

3) Approximation order N : The phase fitting degradation
caused by the decrease of ωb can be compensated by increas-
ing the dynamic order N , e.g. from 7 to 11 (Fig. 4). Increasing
N has an impact on the computational complexity, which
can be a serious constraint, especially if multiple filters are
required and if a large system (like real-world power systems)
is studied. Another possible problem of a very high N is that
multiple poles are placed very close to each other and close to
the imaginary axis. For digital filters, such a pole-placement
may affect the discretization process, with multiple poles being
mapped on the unity circle, due e.g. to rounding errors.

Control parameters need to provide an adequate compro-
mise among accuracy, computational burden and performance.
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Fig. 4: Effect of ωb on ORA frequency response. (γ = −0.4; ωh =
103 rad/s).

A good practice is to limit the range of [ωb, ωh] to the
frequencies of the dynamics of interest. This also avoids
unexpected resonances, as discussed above. Then, given a
range ωb = 10−µb and ωh = 10µh , µb, µh ≥ 0, a choice
that provides a very good compromise is N = µb + µh, with
N ≥ 4.

V. CASE STUDY I: WSCC 9-BUS SYSTEM

This section presents three power system applications of
FOCs. First, we discuss a FO integral controller for secondary
frequency regulation. Then, we study a FO lead-lag controller
for primary frequency regulation of an ESS. Finally, we
examine the performance of voltage regulation provided by
a STATCOM which comprises multiple FOPI controllers. In
all three examples, the pre-disturbance equilibrium of the
fractional DAE model is stable, i.e. condition (16) holds. That
said, the focus is on time-domain simulations carried to discuss
the dynamic performance of ORA-based FOCs and check the
system stability under large disturbances. Examples of this
section are based on the WSCC 9-bus system. In the remainder
of the paper, all simulation results are obtained with DOME
[28].

A. Automatic Generation Control

In this example, an AGC that coordinates the three genera-
tors and provides secondary frequency regulation is included
in the WSCC system. The AGC measures the Center-of-Inertia
(COI) frequency (ωcoi) and produces a dynamic active power
signal (ps), which is sent to the synchronous generator turbine
governors, and is proportional to their droops. The power order
(pord,i) received by the i-th governor is:

pord,i =
Ri
RT

ps , i = {1, 2, 3} , (26)

where Ri is the i-th TG droop constant; and RT = R1 +
R2 +R3. The simplest model of an AGC assumes an integral
controller. The differential equation that describes the dynamic
behaviour of a FO Integral (FOI) AGC is:

p(γ)
s = Ki(ω

ref − ωcoi) , (27)

where Ki is the FOI-AGC gain; ωref is the reference angular
frequency; and γ is the order of integration. The IO version
of this controller (I-AGC) is obtained for γ = 1.

We compare the performance of the I-AGC and the ORA-
based FOI-AGC. With this aim, a three-phase fault is con-
sidered at bus 4 occurring at t = 3 s. After 80 ms, the line
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that connects buses 4 and 5 trips and the fault is cleared.
The parameters of both controllers are tuned by optimizing
the COI frequency profile through trial-and-error. The I-AGC
gain is Ki = 15, while the parameters of the FOI-AGC are
Ki = 50 and γ = 0.7. Regarding the ORA parameters,
taking into account the discussion in IV-D, we set [ωb, ωh] =
[10−3, 101] rad/s, N = 4. Figure 5 presents the COI frequency
response of the system without AGC; with I-AGC; with
FOI-AGC. The FOI-AGC improves significantly the dynamic
response of the frequency of the system. Note that, with
the selected parameters, the FOI-AGC achieves practically a
perfect tracking.
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Fig. 5: WSCC system with AGC: COI frequency.

B. Energy Storage System

In this example, we assume that a converter-interfaced ESS
is installed at bus 6 of the 9-bus system. A simplified model
is employed to describe the ESS dynamics. Figure 6 shows
the block diagram of the ESS active power control. The ESS
measures the local frequency at bus 6 and regulates its active
power pESS to provide frequency support. The frequency error
ωref

6 − ω6 is filtered. Tf,p is the time constant of the applied
filter and xf,p is the filtered signal as well as the input of the
frequency control G(s). Finally, TESS,p is the time constant
of the ESS active power dynamics. The interested reader can
find more details on the employed ESS model in [29].

ωref
6

ω6

11

1 + sTf,p

xf,p yw+

−

1 + sTESS,p

pESS

pmax

ESS

pmin

ESS

G(s)

Fig. 6: Active power flow of simplified ESS model.

In this example, G(s) is assumed to be a FO lead-lag with
transfer function K(T1s

γ + 1)/(T2s
γ + 1). The equations that

describe the FO lead-lag are:

T2x
(γ)
w = Kxf,p − xw ,

yw = xw + T1x
(γ)
w ,

(28)

where xw is the controller’s state. The IO version of this
controller (IO lead-lag) is obtained for γ = 1.

We consider the same disturbance examined at the pre-
vious example (fault at bus 4 cleared after 80 ms). Two

implementations of the IO lead-lag are compared, namely,
the IO lead-lag and the ORA-based IO lead-lag controller for
γ = 1, [ωb, ωh] = [10−4, 104] rad/s. The results are shown in
Fig. 7. The value ωh = 104 rad/s is high enough to trigger a
closed-loop high frequency resonant point, which significantly
impacts the control output. Figure 7 also shows that, while it
is independent from the approximation order, the overshoot
can be avoided by properly reducing the value of ωh.
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Fig. 7: WSCC system with ESS frequency control: lead-lag pa-
rameters: T1 = 2 s, T2 = 0.01 s, K = 10; ORA parameters:
ωb = 10−4 rad/s, γ = 1.

Next, the dynamic performance of the IO lead-lag is com-
pared with two ORA-based FO lead-lags, namely FOLL1 and
FOLL2, which have different tuning. The parameters of the
three controllers are shown in Table I. For comparison, the
gain and time constants of FOLL1 have been set equal to the
ones of the IO lead-lag. In this case, only the order γ needs
to be tuned. In general, however, the control parameters of a
FOC are not directly mapped onto those of its IO version and
should be retuned. FOLL2 represents the retuned controller.
To tune FOLL2, T1 = 2 s is fixed and the rest of the
parameters are selected by optimizing the local bus frequency
profile through trial-and-error. The response of the frequency
at bus 6 is shown in Fig. 8. Shifting the fractional order γ
(FOLL1) allows reducing both the frequency overshoot and
the steady state error of the local bus frequency. Retuning all
control parameters leads to a further performance improvement
(FOLL2).

TABLE I: Parameters of the ESS lead-lag frequency controllers.

IO lead-lag T1 = 2 s, T2 = 0.01 s, K = 20,
FOLL1 T1 = 2 s, T2 = 0.01 s, K = 20, γ = 0.3

FOLL2 T1 = 2 s, T2 = 0.005 s, K = 60, γ = 0.2

C. STATCOM

In this example, a STATCOM connected to bus 8 provides
reactive power support. The reactive power variations provided
by the STATCOM rely on the control of a Voltage Source
Converter (VSC). The VSC is represented by an average value
model. It consists of an AC/DC converter, an AC-side high
voltage/medium voltage transformer, and a DC-side condenser.
The VSC parameters are given in [30].
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[ωb, ωh] = [10−3, 101] rad/s, N = 4.

The VSC is controlled by employing a vector-current con-
trol strategy. The control is based on a dq-axis reference frame
and a phase-locked loop refers all phases to the AC side
voltage phasor angle [31]. The block diagram of the considered
vector-current control is depicted in Fig. 9. The d- and q- axis
current components are decoupled by the inner control loop,
through the controllers Gi,d(s) and Gi,q(s), respectively. In
the STATCOM configuration, the outer control loop utilizes
the d- and q- axis current components to provide regulation
of the DC and AC voltages, through the controllers Go,d(s)
and Go,q(s), respectively.
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Fig. 9: VSC converter, outer and inner control in dq-frame.

Gi,d(s), Gi,q(s), Go,d(s) and Go,q(s), are assumed to be FO
Proportional-Integral (FOPI) controllers. The equations that
describe the behaviour of the FOPI are:

x
(γ)
G = KiuG ,

yG = KpuG + xG ,
(29)

where Kp and Ki, are the proportional and integral gains,
respectively; xG, yG, are the state and output variable of the
controller, respectively; and uG is the controller input. The IO
version of this controller (IOPI) is obtained for γ = 1.

To study the impact of the STATCOM voltage regulation,
we consider a stressed operating condition of the WSCC
system. With this aim, the consumed power is increased by
60% compared to the base case. Then, for the purpose of
transient analysis, an additional 15% consumption increase
of the load connected at bus 8 is considered, occurring at
t = 3 s. The system response is compared for the three fol-
lowing scenarios: without the STATCOM; with the STATCOM
connected and all four controllers modelled as IOPIs; with the

STATCOM and the four controllers modelled as ORA-based
FOPIs. The values of the STATCOM control parameters are
shown in Table II. The inner control loop parameters are tuned
based on the pole cancellation technique as in [32], while
the outer control loop parameters are tuned by optimizing the
local bus voltage profile though trial-and-error. Regarding the
FOPIs ORA parameters, we have set the frequency range at
[10−3, 102] rad/s for the inner control loop; at [10−4, 101] rad/s
for the outer control loop. The dynamic order is N = 5 for
all FOPI controllers.

TABLE II: Parameters of the STATCOM controllers.

IOPIs FOPIs
Kp Ki Kp Ki γ

Gi,d(s) 0.2 20 0.2 20 0.20

Gi,q(s) 0.2 20 0.2 20 0.25

Go,d(s) 50 25 50 25 0.40

Go,q(s) 2.3 6 2.3 80 0.50

Simulation results are presented in Fig. 10. The use of
multiple FOPIs for STATCOM voltage regulation is able
to provide a significant improvement to the local voltage
response.
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Fig. 10: WSCC system with STATCOM: voltage at bus 8.

VI. CASE STUDY II: ALL-ISLAND IRISH SYSTEM

In this section we present results on a detailed model
of the all-island Irish transmission system. Static data of
the Irish network are provided by the transmission system
operator, EirGrid Group. Dynamic data are determined based
on current knowledge of generator capacities and technologies.
The system consists of 1,479 buses; 1,851 transmission lines
and transformers; 245 loads; 22 synchronous generators with
primary voltage, frequency controllers; 6 PSSs; 173 wind
generators; and an I-AGC.

The Irish system model has been validated by utilizing
the frequency data from a severe event that occurred in the
real system [33]. The examined event refers to the tripping
– on the 28-th of February 2018 – of the VSC-HVDC link
East-West Inter-connector (EWIC) that connects the Irish
and the Great Britain transmission systems. At that moment,
Ireland was exporting 470 MW to Great Britain. Following
the loss of the EWIC, the frequency in the Irish grid showed
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a peak of 50.42 Hz, which led to the triggering of over-
frequency protections and wind farm active power generation
curtailment.

A comparison of the actual system response and the one
simulated with Dome is shown in in Fig. 11. As it can be
seen, the simulated transient closely follows the real system
behaviour.
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Fig. 11: Irish system: Frequency response following the loss of
EWIC.

We examine the impact of FOC on the secondary frequency
regulation of the system. To this aim, we substitute the I-AGC
with the FOI-AGC model described by (27). The parameters
of the FOI-AGC are tuned to Ki = 500, γ = 0.15. The ORA
parameters are [ωb, ωh] = [10−3, 101] rad/s, N = 4. Figure 12
shows the frequency response of the system with I-AGC and
FOI-AGC. As it can be seen, the FOI-AGC is able to improve
the frequency regulation of the Irish system.
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Fig. 12: Irish system: Impact of FO-AGC on frequency response.

VII. CONCLUSIONS

The paper studies the theory, stability analysis, computer
implementation and practical design aspects of FOCs for
power system applications. The paper provides a comprehen-
sive theory on fractional calculus for control, as well as a
detailed description of ORA-based FOCs. In all considered
examples, the proposed FOCs are shown to perform better
than the conventional IO versions while requiring only a little
additional tuning effort. This is a general result that shows the
potential of FOCs for power system applications.

We will dedicate future work to examine the impact of
control saturation limits on ORA-based FOCs performance.
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