
Journal of Computational and Applied Mathematics 444 (2024) 115796

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A discrete model for force-based elasticity and plasticity
Ioannis Dassios a,∗, Georgios Tzounas b, Federico Milano a, Andrey Jivkov c

a University College Dublin, Ireland
b ETH Zürich, Switzerland
c University of Manchester, UK

A R T I C L E I N F O

Keywords:
Lattice model
Elasticity
Plasticity
Energy
Non-linear system

A B S T R A C T

The article presents a mathematical model that simulates the elastic and plastic behaviour of
discrete systems representing isotropic materials. The systems consist of one lattice of nodes
connected by edges and a second lattice with nodes placed at the centres of the existing edges.
The derivation is based on the assumption that the kinematics of the second lattice is induced by
the kinematics of the first, and uses stored energies in edges of both lattices to derive a edge
forces in the first lattice. This leads to a non-linear system of algebraic equations describing
elasticity and plasticity in lattices. A numerical solution to the non-linear system is proposed by
providing a matrix formulation necessary for software implementation. An illustrative example
is given to justify the formulation and demonstrate the system behaviour.

1. Introduction

The modelling of solids with lattices has been initially developed for failure analysis of quasi-brittle materials, such as concretes
and rocks [1,2]. This has been dictated by the need to represent the generation of micro-cracks and their coalescence into macro-
cracks leading to material failure in a computationally efficient manner. The emergence of a micro-crack, i.e., of two internal
surfaces, dissipates stored/elastic energy and from a mathematical perspective is a topological evolution of the analysed material
domain. Describing this process is outside the remit of the classical continuum mechanics which is a thermodynamic bulk theory. A
widely used approach to overcome this limitation using existing numerical methods for continuum mechanics problems, such as the
finite element method, is the cohesive zone modelling [3]. This requires insertion of special cohesive elements between standard
finite elements that allow for generation of new surfaces but make the analysis both mesh size dependent and computationally
demanding. In contrast, lattice modelling is less demanding and particularly suitable for quasi-brittle materials as they are
characterised by initial generation of a large population of randomly distributed micro-cracks [4]. Under tension, these materials are
elastic-brittle, where energy is dissipated almost entirely by generation of new surfaces. This simplifies the formulation of the lattice
behaviour. However, under compression the micro-crack generation is in competition with local plasticity for dissipating stored
energy [5]. The competition between plasticity and surface generation is most pronounced in metallic materials, where energy
is dissipated predominantly by plasticity prior to surface generation [6]. The development of lattice models with elastic–plastic
material behaviour will be beneficial for failure analysis in such cases.

Lattice models contain nodes connected by edges, i.e., they are mathematical graphs embedded in R2 or R3 depending on the
required analysis. The models are intended to represent a continuous solid by a discrete system. Specifically, the stored energy in any
lattice region is required to be equivalent to the stored energy in the corresponding continuum region. This is used to derive a link
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between the elastic properties of lattice elements, e.g., edge stiffness coefficients, and the macroscopic properties of the material, but
such a derivation is challenging for general graphs. For graphs with some regularity, the link can be established exactly. For example,
isotropic materials, whose macroscopic behaviour is described by two elastic constants, can be represented by 2𝐷 graphs based on
exagonal structure, e.g. [7], and by 3𝐷 graphs based on truncated octahedral structure [8,9]. Other regular and semi-regular 3𝐷
raphs can represent materials with cubic elasticity, i.e., whose macroscopic behaviour is described by three elastic constants, but not
sotropic elasticity typical for most engineering materials [10]. Nevertheless, lattices are being used to represent failure in materials,
lbeit not always with exactly calibrated local properties.

A mathematically rigorous treatment of lattices can be achieved when they are analysed as graphs [11], using elements of the
iscrete exterior calculus (DEC) [12]. However, the standard DEC has been developed for problems involving conservation of scalar
uantities, such as energy, mass, and electric charge. In such case, the problem unknown is a discrete scalar field over the nodes
a 0-cochain), e.g., temperature, pressure, concentration, etc. The variation of this field providing fluxes via a constitutive relation
s a scalar field over the edges (a 1-cochain), and the conservation/balance is established at nodes. Details of this formulation
nd its software implementation can be found in [13]. An alternative to DEC for conservation of scalar quantities that respects
iven discrete structure exactly has been recently developed using Forman’s combinatorial differential forms [14]. In contrast, the
onservation of linear and angular momenta required for mechanical problems is rather more difficult as the problem unknown
s a vector-valued nodal field, namely displacement vectors assigned to each node. One possibility is to work with discrete sharps
nd flats, similar to the ones suggested in [12], and build a discrete analogue of the continuum mechanics in terms of kinematics,
onstitutive relations and balance of momenta [15]. While this approach is acceptable, it is still computationally demanding and
or large discrete structures the modelling with lattices remains attractive.

In a previous work [16] we have developed a simple representation of plasticity and damage in 3𝐷 lattices using elements of DEC
nd attributing the elastic–plastic behaviour to the individual lattice elements (edges). However, it has been recognised that such an
pproach does not correspond directly to the classical continuum plasticity where plastic flow is independent of the hydrostatic stress
omponent and is controlled by the deviatoric stresses only. In a subsequent work [17] we have proposed a structure comprising
he main graph and a complementary graph that allows for better representation of the internal forces and have analysed its elastic
ehaviour. The aim of the present work is to build upon the past works and develop a graph-theoretical approach to elasto-plasticity
f graphs. In Section 2 we construct a model containing a main graph with nodes and edges and a second graph with nodes placed
t the centres of the main edges. The construction represents the initial state of the material. We then consider the kinematics of
he second graph to be induced by the kinematics of the main one. Using a force-based approach and the stored energy associated
ith the bonds in both graphs we arrive at a non-linear system of algebraic equations describing the elasticity and plasticity of the
aterial. In Section 3 we provide a numerical method for the solutions of the non-linear system, a method appropriate for software

mplementation. Section 4 contains a numerical example based on our theory. We close the paper with the section of conclusions.

. Model with calculus on discrete manifolds

Consider a lattice  containing a set of 𝑛 nodes connected by 𝑚 edges via the algebraic system:

𝐴𝑁 = 𝐸,

here 𝐴 is the incidence matrix, containing 𝑚 rows and 𝑛 columns:

𝐴 = [𝑎𝑖𝑗 ]
𝑗=1,2,…,𝑛
𝑖=1,2,…,𝑚 ∈ R𝑚×𝑛,

ith coefficients given by

𝑎𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

0, if node 𝑗 is not a node of edge 𝑖
1, if node 𝑗 is the first node of edge 𝑖

−1, if node 𝑗 is the second node of edge 𝑖

n discrete calculus, 𝐴 is an algebraic representation of both the topology and the co-boundary operator that maps a 0-cochain (a
unction over the nodes) to a 1-cochain (a function over the edges), see [11]. The nodal coordinates are presented as a discrete
ector-valued function over nodes encoded by the matrix

𝑁 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑁1
𝑁2
⋮
𝑁𝑛

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×3, where 𝑁𝑖 =
[

𝑁𝑖1 𝑁𝑖2 𝑁𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛.

The discrete vector-valued function over edges obtained from 𝑁 by the map 𝐴 is given by the matrix

𝐸 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸1
𝐸2
⋮
𝐸𝑚

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑚×3, where 𝐸𝑖 =
[

𝐸𝑖1 𝐸𝑖2 𝐸𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑚

and contains vectors along edges from where the lengths of all edges 𝐸 , i.e. |𝐸 |, 𝑖 = 1, 2,… , 𝑚, are calculated.
2

𝑖 𝑖



Journal of Computational and Applied Mathematics 444 (2024) 115796I. Dassios et al.

i
t
o

Consider now a second lattice ̂ with 𝑛̂ nodes, placed exactly at the centres of the existing edges, i.e. the number of these nodes
s 𝑛̂ = 𝑚, and 𝑚̂ secondary edges connecting secondary nodes corresponding to existing edges with common exiting nodes. The
opology of the second lattice is described by an incidence matrix 𝐴̂, containing 𝑚̂ rows and 𝑛̂ = 𝑚 columns. Its structure depends
n the existing lattice, i.e., on 𝐴.

The coordinates of the secondary nodes are 𝑁̂𝑖 =
1
2 (𝑁𝑗 +𝑁𝑘), where 𝑖 is the index of the secondary node (equal to the index of

the primary edge) and 𝑗, 𝑘 are the indices of the primary nodes at the ends of edge 𝑖. Let the nodal coordinates of the secondary
lattice be represented by a discrete vector-valued function over secondary nodes

𝑁̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑁̂1

𝑁̂2

⋮

𝑁̂𝑛̂

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛̂×3, where 𝑁̂𝑖 =
[

𝑁̂𝑖1 𝑁̂𝑖2 𝑁̂𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛̂.

This is obtained from the coordinates of the existing nodes by

𝑁̂ = 𝑆𝑁

where

𝑆 = [𝑠𝑖𝑗 ]
𝑗=1,2,…,𝑛
𝑖=1,2,…,𝑚 ∈ R𝑚×𝑛, 𝑠𝑖𝑗 =

{

0, if node 𝑗 is not a node of edge 𝑖.
0.5, if node 𝑗 is a node of edge 𝑖.

The discrete vector-valued function over secondary edges obtained from 𝑁̂ by the map 𝐴̂ is given by the matrix

𝐸̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸̂1

𝐸̂2

⋮

𝐸̂𝑚̂

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑚̂×3, where 𝐸̂𝑖 =
[

𝐸̂𝑖1 𝐸̂𝑖2 𝐸̂𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑚̂,

and contains vectors along secondary edges from where the lengths of all edges 𝐸̂𝑖, i.e. |𝐸̂𝑖|, 𝑖 = 1, 2,… , 𝑚̂ are calculated. The matrix
𝐴̂, which has 𝑚̂ rows and 𝑛̂ = 𝑚 columns, satisfies the equation:

𝐴̂𝑁̂ = 𝐸̂.

When the incidence matrices 𝐴, 𝐴̂ derive from a Voronoi tessellation of space by connecting the centres of cells with common faces
with an edge, they are very sparse matrices — very far from full graph based on the two node sets (primary and secondary).

A boundary value problem is formulated by prescribing boundary conditions at the nodes of . These can be either Neumann,
i.e. prescribed external forces, or Dirichlet, i.e. prescribed new coordinates due to nodal displacements. As a result, the geometry of
the structure changes, so that the nodes of  and ̂ attain new coordinates. Let

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑛

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×3, where 𝑋𝑖 =
[

𝑋𝑖1 𝑋𝑖2 𝑋𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛.

be the new nodal coordinates of , and

𝑋̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑋̂1

𝑋̂2

⋮

𝑋̂𝑛̂

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛̂×3, where 𝑋̂𝑖 =
[

𝑋̂𝑖1 𝑋̂𝑖2 𝑋̂𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛̂.

be the new nodal coordinates of ̂. We require that

𝑋̂ = 𝑆𝑋,

i.e., that the positions of the secondary nodes relative to the existing ones do not change; in other words the deformation of ̂ is
consistent with the deformation of .

The action of 𝐴 on 𝑋 provides the matrix

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑌1
𝑌2
⋮
𝑌𝑚

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑚×3, where 𝑌𝑖 =
[

𝑌𝑖1 𝑌𝑖2 𝑌𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑚.

containing vectors along the existing edges in the deformed state, from where their lengths are readily calculated:
3

𝐴𝑋 = 𝑌 . (1)
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Fig. 1. On the left the plot of the non-smooth function that relates |𝐹𝑖| with |𝑌𝑖| − |𝐸𝑖| of . On the right the plot of the non-smooth function that relates |𝐹𝑖|

with |𝑌𝑖| − |𝐸̂𝑖| of ̂.

The action of 𝐴̂ on 𝑋̂ provides the matrix

𝑌 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑌1
𝑌2
⋮

𝑌𝑚̂

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑚̂×3, where 𝑌𝑖 =
[

𝑌𝑖1 𝑌𝑖2 𝑌𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑚̂.

containing vectors along the existing edges in the deformed state, from where their lengths are readily calculated:

𝐴𝑋̂ = 𝑌 .

Solid materials accommodate strain from external loading by reversible (elastic) rearrangement, giving rise to internal stresses,
and by dissipating energy via slip (plasticity) or separation (surface generation). In the graph framework, the stress is a vector-
valued function over the edges (not a tensor as in continuum mechanics) acting along their current (deformed) orientation. Let
𝑌𝑖
|𝑌𝑖|

, 𝑖 = 1, 2,… , 𝑚, be the unit vectors along edges of lattice , where |𝑌𝑖|, are the new edge lengths. For , the edge forces 𝐹𝑖,
𝑖 = 1, 2,… , 𝑚, are given by

1
|𝐹𝑖|

𝐹𝑖 =
1
|𝑌𝑖|

𝑌𝑖, 𝑖 = 1, 2,… , 𝑚,

which can be summarised for the whole  by

𝐹 = 𝑔(𝑌 )𝑌 , where 𝑔(𝑌 ) = diag
{

|𝐹1|

|𝑌1|
,
|𝐹2|

|𝑌2|
,… ,

|𝐹𝑚|

|𝑌𝑚|

}

∈ R𝑚×𝑚. (2)

Similarly for lattice ̂, the edge forces 𝐹𝑖, ∀𝑗 = 1, 2,… , 𝑚̂, are given by
1

|𝐹𝑗 |
𝐹𝑗 =

1
|𝑌𝑗 |

𝑌𝑗 , 𝑗 = 1, 2,… , 𝑚̂.

which can be summarised for the whole ̂ by

𝐹 = 𝑔(𝑌 )𝑌 , where 𝑔(𝑌 ) = diag

{

|𝐹1|

|𝑌1|
,
|𝐹2|

|𝑌2|
,… ,

|𝐹𝑚̂|

|𝑌𝑚̂|

}

∈ R𝑚̂×𝑚̂.

For the lattice , 𝐹𝑖 are related to the edge elongations, |𝑌𝑖|−|𝐸𝑖|, via a potentially non-smooth function as illustrated in Fig. 1 (left).
Similarly, for the lattice ̂, 𝐹𝑗 are related to the edge elongations, |𝑌𝑗 |− |𝐸̂𝑗 |, via potentially a non-smooth function as illustrated in
Fig. 1 (right).

Upon deformation, the edges of  and ̂ store energy, 𝑈𝑖, for 𝑖 = 1, 2,… , 𝑚 and 𝑈̂𝑗 , for 𝑗 = 1, 2,… , 𝑚̂, respectively. These energies
are dependent on the length changes |𝑌𝑖| − |𝐸𝑖|, 𝑖 = 1, 2,… , 𝑚 and |𝑌𝑗 | − |𝐸̂𝑗 |, 𝑗 = 1, 2,… , 𝑚̂, respectively. Taking into account that
the deformation of ̂ is induced by 𝑋̂ = 𝑆𝑋, it is clear that the system unknowns (nodal coordinates) are associated with the nodes
of  only and correspondingly the system reaction (edge forces) need to be associated with the edges of  only. To achieve this,
we associate the stored energy of the system only with the edges of , making the total energy of -edge 𝑖 equal to the sum of its
internal energy, 𝑈𝑖, and half of the energies in the ̂-edges incident with the ̂-node centred at -edge 𝑖. This can be written as
1
2
∑𝑚̂

𝑗=1 𝑈̂𝑗 , where the sum is over the ̂-edges incident with the ̂-node. Thus, the gradient of the total energy with respect to the
change of edge length, provides the magnitude of the force in the -edge, i.e. for |𝑌𝑖| − |𝐸𝑖| we have

1
2
|𝐹𝑖|

(

|𝑌𝑖| − |𝐸𝑖|
)

= 𝑈𝑖 +
1
2

𝑚̂
∑

𝑈̂𝑗 , 𝑖 = 1, 2,… , 𝑚. (3)
4

𝑗=1
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𝐵 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1
𝐵2
⋮
𝐵𝑛

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×3, where 𝐵𝑖 =
[

𝐵𝑖1 𝐵𝑖2 𝐵𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛,

be the external forces at the nodes of , either provided as Neumann boundary conditions, or arising as reactions to essential
boundary conditions, and let

𝐵̂ =

⎡

⎢

⎢

⎢

⎢

⎣

𝐵̂1
𝐵̂2
⋮
𝐵̂𝑛̂

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛̂×3, where 𝐵̂𝑖 =
[

𝐵̂𝑖1 𝐵̂𝑖2 𝐵̂𝑖3
]

∈ R1×3, 𝑖 = 1, 2,… , 𝑛̂.

be the external forces at the nodes of ̂.
Since the balance of angular momentum is automatically fulfilled at all nodes, the equilibrium of the system with the boundary

conditions is ensured by the balance of linear momentum at all nodes. This is given by

𝐴⊺𝐹 = 𝐵, (4)

where 𝐴⊺ ∈ R𝑛×𝑚 is the transpose of the incidence matrix 𝐴, a boundary operator on edges of . By substituting (2) into (4), we get

𝐴⊺𝑔(|𝑌 |)𝑌 = 𝐵,

which incorporates the contribution of ̂. By substituting (1) into this non-linear system, we arrive at the general description of the
system elasticity in terms of positions and forces of nodes in :

[𝐴⊺𝑔(|𝐴𝑋|)𝐴]𝑋 = 𝐵. (5)

The application of boundary conditions to system (5) requires a separation of the nodal coordinate directions into two groups:
irections with prescribed Neumann condition – a force component, which may be zero (free boundary), and directions with
rescribed Dirichlet condition – a new coordinate value which also may be zero (fixed boundary). This separation can be represented
y the following expressions for nodal positions and forces, and a correspondingly re-arranged incidence matrix

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝
𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×3, 𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵1
𝐵2
⋮
𝐵𝑝
𝐵𝑝+1
𝐵𝑝+2
⋮

𝐵𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×3,

ith 𝑋𝑝+𝑞 , 𝐵𝑝+𝑞 we denote 𝑋𝑛, 𝐵𝑛 respectively. Where

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑝×3, and

⎡

⎢

⎢

⎢

⎢

⎣

𝐵𝑝+1
𝐵𝑝+2
⋮
𝐵𝑛

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑞×3,

re vectors of the unknown coordinates and the known corresponding forces, and

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑞×3,

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1
𝐵2
⋮
𝐵𝑝

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑝×3,

re vectors of the known coordinates and the unknown corresponding forces.

. Main results

System (5) is a non-linear system. This is because of the diagonal matrix 𝑔(|𝐴𝑋 |) defined in (1). We provide the following
heorem:

heorem 3.1. Consider the non-linear system (5). Then an effective linearisation of the system is given by

𝐴̃𝑋 = 𝐵. (6)

̃ ⊺ ̃ ̃ ̃
5

here 𝐴 = 𝐴 𝐾𝐴 with 𝐾 = diag[𝐾𝑖]1≤𝑖≤𝑚 and
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• For 𝑎𝑖 ≤ 𝑟𝑖 ≤ 𝑏𝑖, 𝑎̂𝑗 ≤ 𝑟̂𝑗 ≤ 𝑏̂𝑗 :

𝐾̃𝑖 =
(𝑎𝑖 + 𝑏𝑖)𝑙𝑖 +

(

2𝑙𝑖 +
∑𝑚̂

𝑗=1
( 𝑎̂𝑗
2𝑏𝑖

+ 𝑏̂𝑗
2𝑎𝑖

)

𝑙𝑗
)

|𝐸𝑖| +
∑𝑚̂

𝑗=1
( 𝑎𝑖 𝑎̂𝑗

2𝑏𝑖
+ 𝑏𝑖 𝑏̂𝑗

2𝑎𝑖

)

𝑙𝑗
2(𝑎𝑖 + |𝐸𝑖|)(𝑏𝑖 + |𝐸𝑖|)

• For 𝑏𝑖 ≤ 𝑟𝑖 ≤ 0, 𝑏̂𝑗 ≤ 𝑟̂𝑗 ≤ 0:

𝐾̃𝑖 =
|𝐹𝑖|

|𝑌𝑖|
≅ 1

2𝑏𝑖

[

𝑙𝑖(1 −
|𝐸𝑖|

𝑏𝑖 + |𝐸𝑖|
) + 1

|𝐸𝑖|

𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗

]

• For 0 ≤ 𝑟𝑖 ≤ 𝑐𝑖, 0 ≤ 𝑟̂𝑗 ≤ 𝑐𝑗 :

𝐾̃𝑖 ≅
1
2𝑐𝑖

[

𝑘𝑖(1 −
|𝐸𝑖|

𝑐𝑖 + |𝐸𝑖|
) + 1

|𝐸𝑖|

𝑚̂
∑

𝑗=1
𝑘̂𝑗𝑐𝑗

]

.

• For 𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖, 𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 :

𝐾̃𝑖 ≅
(𝑐𝑖 + 𝑑𝑖)𝑘𝑖 +

(

2𝑘𝑖 +
∑𝑚̂

𝑗=1
( 𝑐𝑗
2𝑑𝑖

+ 𝑑𝑗
2𝑐𝑖

)

𝑘̂𝑗
)

|𝐸𝑖| +
∑𝑚̂

𝑗=1
( 𝑐𝑖𝑐𝑗
2𝑑𝑖

+ 𝑑𝑖𝑑𝑗
2𝑐𝑖

)

𝑘̂𝑗
2(𝑐𝑖 + |𝐸𝑖|)(𝑑𝑖 + |𝐸𝑖|)

.

Where 𝑟𝑖 = |𝑌𝑖| − |𝐸𝑖|, 𝑟̂𝑗 = |𝑌𝑗 | − |𝐸̂𝑗 |. Let

𝐴̃ =
[

𝐴̃11 𝐴̃12
𝐴̃21 𝐴̃22

]

.

Where 𝐴̃11 ∈ R𝑝×𝑝, 𝐴̃12 ∈ R𝑝×𝑞 , 𝐴̃21 ∈ R𝑞×𝑞 , 𝐴̃22 ∈ R𝑞×𝑞 . Then system (11) can be divided into the following subsystems

𝐴̃11

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵1
𝐵2
⋮
𝐵𝑝

⎤

⎥

⎥

⎥

⎥

⎦

− 𝐴̃12

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎦

(7)

and
⎡

⎢

⎢

⎢

⎢

⎣

𝐵𝑝+1
𝐵𝑝+2
⋮
𝐵𝑛

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐴̃21

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝐴̃22

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎦

. (8)

From the above systems only (7) has to be solved. Then

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝

⎤

⎥

⎥

⎥

⎥

⎦

can be replaced in (8) and

⎡

⎢

⎢

⎢

⎢

⎣

𝐵𝑝+1
𝐵𝑝+2
⋮
𝐵𝑛

⎤

⎥

⎥

⎥

⎥

⎦

is easily computed.

Proof. We consider (5) and will seek optimal bounds for |𝐹𝑖|
|𝑌𝑖|

, ∀𝑖 = 1, 2,… , 𝑚.
For 𝑎𝑖 ≤ 𝑟𝑖 ≤ 𝑏𝑖, 𝑎̂𝑗 ≤ 𝑟̂𝑗 ≤ 𝑏̂𝑗 and (3) we have

|𝐹𝑖| = 𝑙𝑖 +
1

2(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[

𝑙𝑗
(

|𝑌𝑗 | − |𝐸̂𝑗 |
)]

, 𝑙𝑖, 𝑙𝑗 < 0,

From Fig. 1 we have that

𝑎̂𝑗 ≤ |𝑌𝑗 | − |𝐸̂𝑗 | ≤ 𝑏̂𝑗 ,

or, equivalently,

𝑎̂𝑗 𝑙𝑗 ≥ 𝑟̂𝑗 𝑙𝑗 ≥ 𝑏̂𝑗 𝑙𝑗 ,

or, equivalently,

1
2𝑏𝑖

𝑚̂
∑

𝑗=1
𝑎̂𝑗 𝑙𝑗 ≤

1
2𝑟𝑖

𝑚̂
∑

𝑗=1
𝑟̂𝑗 𝑙𝑗 ≤

1
2𝑎𝑖

𝑚̂
∑

𝑗=1
𝑏̂𝑗 𝑙𝑗 ,

or, equivalently,

𝑙𝑖 +
1
2𝑏

𝑚̂
∑

𝑎̂𝑗 𝑙𝑗 ≤ |𝐹𝑖| ≤ 𝑙𝑖 +
1
2𝑎

𝑚̂
∑

𝑏̂𝑗 𝑙𝑗 ,
6

𝑖 𝑗=1 𝑖 𝑗=1
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o

o

C

and consequently

𝑙𝑖 +
1
2𝑏𝑖

∑𝑚̂
𝑗=1 𝑎̂𝑗 𝑙𝑗

𝑏𝑖 + |𝐸𝑖|
≤

|𝐹𝑖|

|𝑌𝑖|
≤

𝑙𝑖 +
1
2𝑎𝑖

∑𝑚̂
𝑗=1 𝑏̂𝑗 𝑙𝑗

𝑎𝑖 + |𝐸𝑖|
.

Hence

|𝐹𝑖|

|𝑌𝑖|
≅

(𝑎𝑖 + 𝑏𝑖)𝑙𝑖 +
(

2𝑙𝑖 +
∑𝑚̂

𝑗=1
( 𝑎̂𝑗
2𝑏𝑖

+ 𝑏̂𝑗
2𝑎𝑖

)

𝑙𝑗
)

|𝐸𝑖| +
∑𝑚̂

𝑗=1
( 𝑎𝑖 𝑎̂𝑗

2𝑏𝑖
+ 𝑏𝑖 𝑏̂𝑗

2𝑎𝑖

)

𝑙𝑗
2(𝑎𝑖 + |𝐸𝑖|)(𝑏𝑖 + |𝐸𝑖|)

. (9)

For 𝑏𝑖 ≤ 𝑟𝑖 ≤ 0, 𝑏̂𝑗 ≤ 𝑟̂𝑗 ≤ 0 we have

|𝐹𝑖| =
𝑙𝑖
𝑏𝑖
(|𝑌𝑖| − |𝐸𝑖|) +

1
2(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[
𝑙𝑗
𝑏̂𝑗

(

|𝑌𝑗 | − |𝐸̂𝑗 |
)2], 𝑙𝑖, 𝑙𝑗 < 0,

or, equivalently,

|𝐹𝑖|

|𝑌𝑖|
=

𝑙𝑖
𝑏𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
) + 1

2|𝑌𝑖|(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[
𝑙𝑗
𝑏̂𝑗

(

|𝑌𝑗 | − |𝐸̂𝑗 |
)2], 𝑖 = 1, 2,… , 𝑚.

From Fig. 1 we have that

𝑏̂𝑗 ≤ |𝑌𝑗 | − |𝐸̂𝑗 | ≤ 0,

or, equivalently,

0 ≤
𝑚̂
∑

𝑗=1

𝑙𝑗
𝑏̂𝑗

𝑟̂2𝑗 ≤
𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗 ,

r, equivalently,

1
2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗 ≤

1
2|𝑌𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1

𝑙𝑗
𝑏̂𝑗

𝑟̂2𝑗 ≤ 0,

or, equivalently,

𝑙𝑖
𝑏𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
) + 1

2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗 ≤

|𝐹𝑖|

|𝑌𝑖|
≤

𝑙𝑖
𝑏𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
),

r, equivalently,

𝑙𝑖
𝑏𝑖
(1 −

|𝐸𝑖|

𝑏𝑖 + |𝐸𝑖|
) + 1

2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗 ≤

|𝐹𝑖|

|𝑌𝑖|
≤ 0,

because

1 −
|𝐸𝑖|

𝑏𝑖 + |𝐸𝑖|
≤ 1 −

|𝐸𝑖|

|𝑌𝑖|
≤ 0.

onsequently

|𝐹𝑖|

|𝑌𝑖|
≅ 1

2𝑏𝑖

[

𝑙𝑖(1 −
|𝐸𝑖|

𝑏𝑖 + |𝐸𝑖|
) + 1

|𝐸𝑖|

𝑚̂
∑

𝑗=1
𝑙𝑗 𝑏̂𝑗

]

. (10)

For 0 ≤ 𝑟𝑖 ≤ 𝑐𝑖, 0 ≤ 𝑟̂𝑗 ≤ 𝑐𝑗 we have

|𝐹𝑖| =
𝑘𝑖
𝑐𝑖
(|𝑌𝑖| − |𝐸𝑖|) +

1
2(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[
𝑘̂𝑗
𝑐𝑗

(

|𝑌𝑗 | − |𝐸̂𝑗 |
)2], 𝑘𝑖, 𝑘̂𝑗 > 0, 𝑖 = 1, 2,… , 𝑚.

or, equivalently,

|𝐹𝑖|

|𝑌𝑖|
=

𝑘𝑖
𝑐𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
) + 1

2|𝑌𝑖|(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[
𝑘̂𝑗
𝑐𝑗

(

|𝑌𝑗 | − |𝐸̂𝑗 |
)2], 𝑖 = 1, 2,… , 𝑚.

From Fig. 1 we have that

0 ≤ |𝑌𝑗 | − |𝐸̂𝑗 | ≤ 𝑐𝑗 ,

or, equivalently,

0 ≤
𝑚̂
∑ 𝑘̂𝑗

𝑐
𝑟̂2𝑗 ≤

𝑚̂
∑

𝑘̂𝑗𝑐𝑗 ,
7

𝑗=1 𝑗 𝑗=1
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or, equivalently,

0 ≤ 1
2|𝑌𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1

𝑘̂𝑗
𝑐𝑗

𝑟̂2𝑗 ≤
1

2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑘̂𝑗𝑐𝑗 ,

r, equivalently,

𝑘𝑖
𝑐𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
) ≤

|𝐹𝑖|

|𝑌𝑖|
≤

𝑘𝑖
𝑐𝑖
(1 −

|𝐸𝑖|

|𝑌𝑖|
) + 1

2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑘̂𝑗𝑐𝑗 ,

r, equivalently,

0 ≤
|𝐹𝑖|

|𝑌𝑖|
≤

𝑘𝑖
𝑐𝑖
(1 −

|𝐸𝑖|

𝑐𝑖 + |𝐸𝑖|
) + 1

2|𝐸𝑖|𝑟𝑖

𝑚̂
∑

𝑗=1
𝑘̂𝑗𝑐𝑗 ,

because

0 ≤ 1 −
|𝐸𝑖|

|𝑌𝑖|
≤ 1 −

|𝐸𝑖|

𝑐𝑖 + |𝐸𝑖|
.

onsequently

|𝐹𝑖|

|𝑌𝑖|
≅ 1

2𝑐𝑖

[

𝑘𝑖(1 −
|𝐸𝑖|

𝑐𝑖 + |𝐸𝑖|
) + 1

|𝐸𝑖|

𝑚̂
∑

𝑗=1
𝑘̂𝑗𝑐𝑗

]

. (11)

For 𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖, 𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 and (3) we have

|𝐹𝑖| = 𝑘𝑖 +
1

2(|𝑌𝑖| − |𝐸𝑖|)

𝑚̂
∑

𝑗=1

[

𝑘̂𝑗
(

|𝑌𝑗 | − |𝐸̂𝑗 |
)]

, 𝑘𝑖, 𝑘̂𝑗 > 0, 𝑖 = 1, 2,… , 𝑚.

From Fig. 1 we have that

𝑐𝑗 ≤ |𝑌𝑗 | − |𝐸̂𝑗 | ≤ 𝑑𝑗 ,

or, equivalently,

1
2𝑑𝑖

𝑚̂
∑

𝑗=1
𝑐𝑗 𝑘̂𝑗 ≤

1
2𝑟𝑖

𝑚̂
∑

𝑗=1
𝑟̂𝑗 𝑘̂𝑗 ≤

1
2𝑐𝑖

𝑚̂
∑

𝑗=1
𝑑𝑗 𝑘̂𝑗 ,

or, equivalently,

𝑘𝑖 +
1
2𝑑𝑖

𝑚̂
∑

𝑗=1
𝑐𝑗 𝑘̂𝑗 ≤ |𝐹𝑖| ≤ 𝑘𝑖 +

1
2𝑐𝑖

𝑚̂
∑

𝑗=1
𝑑𝑗 𝑘̂𝑗 ,

and consequently

𝑘𝑖 +
1
2𝑑𝑖

∑𝑚̂
𝑗=1 𝑐𝑗 𝑘̂𝑗

𝑑𝑖 + |𝐸𝑖|
≤

|𝐹𝑖|

|𝑌𝑖|
≤

𝑘𝑖 +
1
2𝑐𝑖

∑𝑚̂
𝑗=1 𝑑𝑗 𝑘̂𝑗

𝑐𝑖 + |𝐸𝑖|
,

Hence

|𝐹𝑖|

|𝑌𝑖|
≅

(𝑐𝑖 + 𝑑𝑖)𝑘𝑖 +
(

2𝑘𝑖 +
∑𝑚̂

𝑗=1
( 𝑐𝑗
2𝑑𝑖

+ 𝑑𝑗
2𝑐𝑖

)

𝑘̂𝑗
)

|𝐸𝑖| +
∑𝑚̂

𝑗=1
( 𝑐𝑖𝑐𝑗
2𝑑𝑖

+ 𝑑𝑖𝑑𝑗
2𝑐𝑖

)

𝑘̂𝑗
2(𝑐𝑖 + |𝐸𝑖|)(𝑑𝑖 + |𝐸𝑖|)

, (12)

System (5) can be written as

[

𝐴̃11 𝐴̃12
𝐴̃21 𝐴̃22

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝
𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐵1
𝐵2
⋮
𝐵𝑝
𝐵𝑝+1
𝐵𝑝+2
⋮

𝐵𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

r, equivalently,

𝐴̃11

⎡

⎢

⎢

⎢

⎢

𝑋1
𝑋2
⋮

⎤

⎥

⎥

⎥

⎥

+ 𝐴̃12

⎡

⎢

⎢

⎢

⎢

𝑋𝑝+1
𝑋𝑝+2
⋮

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝐵1
𝐵2
⋮

⎤

⎥

⎥

⎥

⎥

,

8

⎣

𝑋𝑝 ⎦ ⎣

𝑋𝑝+𝑞 ⎦ ⎣

𝐵𝑝 ⎦
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Fig. 2. Lattice  and ̂ graphs in initial positions.

and

𝐴̃21

⎡

⎢

⎢

⎢

⎢

⎣

𝑋1
𝑋2
⋮
𝑋𝑝

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝐴̃22

⎡

⎢

⎢

⎢

⎢

⎣

𝑋𝑝+1
𝑋𝑝+2
⋮

𝑋𝑝+𝑞

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐵𝑝+1
𝐵𝑝+2
⋮
𝐵𝑛

⎤

⎥

⎥

⎥

⎥

⎦

.

From the above expressions we get the subsystems (7), (8). The proof is completed. □

Theorem 3.1 presents a solution for the non-linear system (5) by utilising the linear system (6). This method offers several
advantages, including the ability to analyse solutions of non-linear systems involving large matrices at a minimal computational
cost, thanks to the linearity of (6). Furthermore, the proposed method proves to be user-friendly for handling non-linear systems
not only in the present context but also in various other applications, including electrical networks [18,19], gas networks [20], and
dynamical networks [21–23].

4. Numerical example

In this section, we illustrate the main results of the paper through a numerical example. In particular, we consider a system
comprising a lattice  of 𝑛 = 6 nodes with coordinates 𝑁 = [𝑁1 𝑁2 …𝑁6]⊺, which are connected through 𝑚 = 12 edges with vector
values 𝐸 = [𝐸1 𝐸2 … 𝐸12]⊺. In addition, the midpoints of the 12 edges of the lattice are also the coordinates 𝑁̂ = [𝑁̂1 𝑁̂2 … 𝑁̂12]⊺

of a second lattice ̂ with 𝑛̂ = 12 nodes. The nodes of the second lattice are connected through 𝑚̂ = 36 edges with vector values
𝐸̂ = [𝐸̂1 𝐸̂2 … 𝐸̂36]⊺. The values of the components of 𝑁 , 𝐸, 𝑁̂ and 𝐸̂ are given in Table 1. A three-dimensional representation of
the graphs of the two lattices is shown in Fig. 2(a), while a two-dimensional representation of the same graphs is given in Fig. 2(b).

The incidence matrix corresponding to  is:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

1 0 0 −1 0 0
1 0 0 0 −1 0
1 −1 0 0 0 0
1 0 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 −1 0 0 1 0
0 1 −1 0 0 0
0 0 0 −1 0 1
0 0 0 0 −1 1
0 −1 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

9

⎣ 0 0 −1 0 0 1 ⎦



Journal of Computational and Applied Mathematics 444 (2024) 115796I. Dassios et al.
while the incidence matrix corresponding to ̂ is:

𝐴̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 0 0 0 −1 0 0
1 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 0 0 1 −1
0 0 0 0 0 1 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 1 0 0 0 −1
0 0 0 0 0 0 0 0 1 −1 0 0
0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 0 0 −1
0 0 0 0 1 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

We now assume the application of an external force to the examined structure. As a result, the geometry of the structure is
deformed, and the nodes of  and ̂ have new coordinates 𝑋 and 𝑋̂, respectively. Moreover, the new values of the edge vectors
of  and ̂ of the deformed structure are given by 𝑌 and 𝑌 , respectively. Then, the length change of the 𝑖th edge of  due to the
applied force is given by 𝑟𝑖 = |𝑌𝑖| − |𝐸𝑖|, while the length change of the 𝑗th edge of ̂ is given by 𝑟̂𝑗 = |𝑌𝑗 | − |𝐸̂𝑗 |. In the remainder
of this example we consider the following cases:

• 0 ≤ 𝑟𝑖 ≤ 𝑐𝑖, 0 ≤ 𝑟̂𝑗 ≤ 𝑐𝑗 , and
• 𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖, 𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 ,

where the values of 𝑐𝑖, 𝑑𝑖, 𝑐𝑗 and 𝑑𝑗 are given in Table 2.
First, for 0 ≤ 𝑟𝑖 ≤ 𝑐𝑖, 0 ≤ 𝑟̂𝑗 ≤ 𝑐𝑗 , we find from Theorem 3.1 that 𝐾̃𝑖 = 6.44 ⋅ 10−4, 𝑖 = 1, 2,… , 𝑚, where the values of 𝑘𝑖 and 𝑘̂𝑗 are

given in Table 2. Then, we have 𝐴̃ = 𝐴⊺𝐾̃𝐴. Matrix 𝐴̃ can be written as:

𝐴̃ =
[

𝐴̃11 𝐴̃12
𝐴̃21 𝐴̃22

]

, (13)

where

𝐴̃11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.0026 −0.0006 −0.0006 −0.0006 −0.0006
−0.0006 0.0026 −0.0006 0 −0.0006
−0.0006 −0.0006 0.0026 −0.0006 0
−0.0006 0 −0.0006 0.0026 −0.0006
−0.0006 −0.0006 0 −0.0006 0.0026

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝐴̃21 = 𝐴̃12
⊺ =

[

0 −0.0006 −0.0006 −0.0006 −0.0006
]

, 𝐴̃22 = 0.0026 .
10

Given the values of 𝐵𝑖, 𝑖 = 1, 2,… , 5, in
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Table 1
Initial nodes, edges, and edge lengths.
𝑖 𝑁𝑖 𝑁̂𝑖 𝐸𝑖 |𝐸𝑖| 𝐸̂𝑖 |𝐸̂𝑖|

1 (0, 0,1) (−0.5,0,0.5) (1,0,1)
√

2 (−0.5,−0.5,0) 1∕
√

2
2 (1,0,0) (0,0.5,0.5) (0,−1,1)

√

2 (−0.5,0.5,0) 1∕
√

2
3 (0,−1,0) (0.5,0,0.5) (−1,0,1)

√

2 (0.5,0.5,0) 1∕
√

2
4 (−1,0,0) (0,−0.5,0.5) (0,1,1)

√

2 (0.5,−0.5,0) 1∕
√

2
5 (0,1,0) (−0.5,−0.5,0) (1,−1,0)

√

2 (0,0.5,0.5) 1∕
√

2
6 (0,0,−1) (−0.5,0.5,0) (−1,-1,0)

√

2 (0,−0.5,0.5) 1∕
√

2
7 (0.5,0.5,0) (−1,1,0)

√

2 (0.5,0,0.5) 1∕
√

2
8 (0.5,−0.5,0) (1,1,0)

√

2 (−0.5,0,0.5) 1∕
√

2
9 (−0.5,0,−0.5) (1,0,−1)

√

2 (0,−0.5,0.5) 1∕
√

2
10 (0,0.5,−0.5) (0,−1,-1)

√

2 (0,0.5,0.5) 1∕
√

2
11 (0.5,0,−0.5) (−1,0,−1)

√

2 (−0.5,0,0.5) 1∕
√

2
12 (0,−0.5,−0.5) (0,1,−1)

√

2 (0.5,0,0.5) 1∕
√

2
13 (0,−1,0) 1
14 (−1,0,0) 1
15 (0,1,0) 1
16 (1,0,0) 1
17 (−0.5,0,0.5) 1∕

√

2
18 (0,−0.5,0.5) 1∕

√

2
19 (0,0.5,0.5) 1∕

√

2
20 (−0.5,0,0.5) 1∕

√

2
21 (0.5,0,0.5) 1∕

√

2
22 (0,0.5,0.5) 1∕

√

2
23 (0,−0.5,0.5) 1∕

√

2
24 (0.5,0,0.5) 1∕

√

2
25 (−0.5,−0.5,0) 1∕

√

2
26 (−0.5,0.5,0) 1∕

√

2
27 (0.5,0.5,0) 1∕

√

2
28 (0.5,−0.5,0) 1∕

√

2
29 (−1,0,0) 1
30 (0,1,0) 1
31 (−1,0,0) 1
32 (0,1,0) 1
33 (0,0,1) 1
34 (0,0,1) 1
35 (0,0,1) 1
36 (0,0,1) 1

Table 2, and that 𝑋6 = 𝑁6 = (0, 0,−1), we can compute the final positions 𝑋 of the nodes of  through the solution of (7):

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−15.89 17.59 123.2
57.77 14.66 61.6)

−13.24 −64.16 61.6
−94.83 14.66 61.6
−13.24 105.22 61.6

0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Moreover, as a byproduct, we find from (8) that 𝐵6 = (0.04,−0.05,−0.16).

Finally, the new positions 𝑋̂ of the nodes of ̂ are computed through the relationship 𝑋̂ = 𝑆𝑋, where for this example:

𝑆 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0.5 0 0 0.5 0 0
0.5 0 0 0 0.5 0
0.5 0.5 0 0 0 0
0.5 0 0.5 0 0 0
0 0 0.5 0.5 0 0
0 0 0 0.5 0.5 0
0 0.5 0 0 0.5 0
0 0.5 0.5 0 0 0
0 0 0 0.5 0 0.5
0 0 0 0 0.5 0.5
0 0.5 0 0 0 0.5

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

. (14)
11

⎣ 0 0 0.5 0 0 0.5 ⎦
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t

a

Table 2
Given forces on nodes and material properties.
𝑖 𝑐𝑖 𝑑𝑖 𝑐𝑖 𝑑𝑖 𝑘𝑖 × 104 𝑘̂𝑖 × 104 𝐵𝑖

1 0.2121 7.0711 0.1061 3.5355
√

2 1∕
√

2 (0,0,0.1586)
2 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0.1760,0,0)
3 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0,−0.1954,0)
4 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (−0.2169,0,0)
5 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2 (0,0.2407,0)
6 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
7 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
8 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
9 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
10 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
11 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
12 0.2121 7.0711 0.1061 3.5355

√

2 1∕
√

2
13 0.1500 5 1
14 0.1500 5 1
15 0.1500 5 1
16 0.1500 5 1
17 0.1061 3.5355 1∕

√

2
18 0.1061 3.5355 1∕

√

2
19 0.1061 3.5355 1∕

√

2
20 0.1061 3.5355 1∕

√

2
21 0.1061 3.5355 1∕

√

2
22 0.1061 3.5355 1∕

√

2
23 0.1061 3.5355 1∕

√

2
24 0.1061 3.5355 1∕

√

2
25 0.1061 3.5355 1∕

√

2
26 0.1061 3.5355 1∕

√

2
27 0.1061 3.5355 1∕

√

2
28 0.1061 3.5355 1∕

√

2
29 0.15 5 1
30 0.15 5 1
31 0.15 5 1
32 0.15 5 1
33 0.15 5 1
34 0.15 5 1
35 0.15 5 1
36 0.15 5 1

We find:

𝑋̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−55.36 16.12 92.40
−14.56 61.41 92.40
20.94 16.13 92.40

−14.56 −23.28 92.40
−54.03 −24.75 61.60
−54.03 59.94 61.60
22.27 59.94 61.60
22.27 −24.75 61.60

−47.42 7.33 30.30
−6.62 52.61 30.30
28.88 7.33 30.30
−6.62 −32.08 30.30

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

A three-dimensional representation of the graphs of the two lattices in their final positions is depicted in Fig. 3(a), while a
wo-dimensional plot of the same graphs is depicted in Fig. 3(b).

Second, for 𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖, 𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 , from Theorem 3.1 we get that 𝐾̃𝑖 = 0.0088, 𝑖 = 1, 2,… , 𝑚. Then, then 𝐴̃ is given by 𝐴̃ = 𝐴⊺𝐾̃𝐴
nd can be written in the form of (13), where in this case:

𝐴̃11 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.035 −0.0088 −0.0088 −0.0088 −0.0088
−0.0088 0.035 −0.0088 0 −0.0088
−0.0088 −0.0088 0.035 −0.0088 0
−0.0088 0 −0.0088 0.035 −0.0088
−0.0088 −0.0088 0 −0.0088 0.035

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

̃ ̃ ⊺ [ ] ̃
12

𝐴21 = 𝐴12 = 0 −0.0088 −0.0088 −0.0088 −0.0088 , 𝐴22 = 0.035 .



Journal of Computational and Applied Mathematics 444 (2024) 115796I. Dassios et al.
Fig. 3. Lattice  and ̂ graphs in final positions (0 ≤ 𝑟𝑖 ≤ 𝑐𝑖, 0 ≤ 𝑟̂𝑗 ≤ 𝑐𝑗 ).

The final positions 𝑋 of the nodes of  are computed through the solution of (7):

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1.17 1.29 9.06
4.25 1.08 4.52

−0.97 −4.72 4.52
−6.98 1.08 4.52
−0.97 7.74 4.52

0 0 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Moreover, from (8), we get that 𝐵6 = (0.04,−0.05,−0.19).
Finally, the new positions 𝑋̂ of the nodes of ̂ can be found through the relationship 𝑋̂ = 𝑆𝑋, where 𝑆 is given by (14). We

find:

𝑋̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−4.07 1.18 6.79
−1.07 4.52 6.79
1.54 1.19 6.79

−1.07 −1.71 6.79
−3.97 −1.82 4.52
−3.97 4.41 4.52
1.64 4.41 4.52
1.64 −1.82 4.52

−3.49 0.54 1.76
−0.49 3.87 1.76
2.12 0.54 1.76

−0.49 −2.36 1.76

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Finally, a three-dimensional representation of the graphs of the two lattices in their final positions for the case 𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖,
𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 is presented in Fig. 4(a), while a two-dimensional plot of the same graphs is presented in Fig. 4(b).

The graphs shown in this section have been generated with an ad hoc Matlab script, which is available for download at [24].

Conclusions

In this article we proposed a mathematical model of elasticity and plasticity by using DEC and a force-based approach, where
the discrete structure of materials is represented by two graphs. By making the kinematics of one of the graphs induced by the
kinematics of the other, we derived the governing equations of elasticity and plasticity, where the deformations of both graphs
contribute energy to the system, but the reaction of the system is only via forces in the edges of latter graph. This provides a
single non-linear system of governing equations, for which we offered linearisation, computational implementation, and a simple
demonstration of the model at work.

The model requires extensive testing with larger lattices to compare with experimentally measured elastic behaviour of various
materials, which is a subject of ongoing work. We anticipate that the model can be used for atomic-scale simulations as an alternative
to the currently used in molecular dynamics interactions based on empirical pair and cohesive potentials. The reason for our
expectation is that the inclusion of the complementary lattice in our model could be a suitable replacement to the cohesive potentials
including those with angular dependencies.
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Fig. 4. Lattice  and ̂ graphs in final positions (𝑐𝑖 ≤ 𝑟𝑖 ≤ 𝑑𝑖, 𝑐𝑗 ≤ 𝑟̂𝑗 ≤ 𝑑𝑗 ).
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