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Abstract: The paper discusses the impact of multiple time delays on the stability of centralized
wide area damping controllers (WADCs). These controllers are utilized in electric power systems
to damp the interarea oscillations. With this aim, an ideal WADC is first designed based on the
well-known H∞ control scheme. Then delays are included for all remote signals of the WADC
and different delay models, namely, constant, stochastic and periodic delays with dropout, are
considered and compared. Both nonlinear time domain simulations and closed-loop eigenvalue
analysis based on the 2-area test system are carried out. Finally, a probabilistic method to
evaluate the impact of stochastic communication delays on small-signal stability is discussed.

Keywords: Interarea oscillations, wide area damping controller (WADC), H∞ control, time
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1. INTRODUCTION

1.1 Motivation

Electric energy networks are complex, nonlinear systems
that include many control signals, some of which are
transmitted over long distances. The communication of
remote signals introduces time-varying stochastic delays
that are known to impact on the stability of the overall
power systems (Zhang and Bose, 2008; Wu et al., 2004).
How to properly study the impact of such time-varying
delays through accurate yet robust numerical techniques
is still an open and challenging field of research and the
objective of the present work.

1.2 Literature Review

Highly congested power systems often show poorly damped
low frequency interarea oscillations. This problem has
scaled in recent years due to the expansion of distribution
networks, the penetration of renewable energy resources
and an overall load increase.

The installation of Power System Stabilizers (PSSs) is a
standard solution for damping electro-mechanical swings
(Kundur, 1994). While they effectively reduce the impact
of local modes of their synchronous machine, PSSs are
often unable to damp the interarea oscillations (Zhang
and Bose, 2008). The development of Wide Area Mea-
surement Systems (WAMSs), in the past two decades, has
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introduced a new perspective in dealing with interarea
oscillations. A WAMS is able to measure and process real-
time dynamic data through Phasor Measurement Units
(PMUs) (Kamwa et al., 2013). Wide area signals, that
provide good or even global observability of the interarea
modes, can be transmitted to a Wide Area Damping Con-
troller (WADC) through a communication network (Wu
et al., 2004). A variety of different strategies has been
proposed in recent literature to design effective WADCs.
Among these we cite single and multi-objective robust
control synthesis (Yao et al., 2011), hierarchical structure
(Okou et al., 2005), and adaptive critic controllers (Ray
and Venayagamoorthy, 2008).

The involvement of the communication network in a
WAMS introduces multiple delays, dropouts, disordering
and noise in control signals delivery. However, the vast
majority of existing studies has considered delays as con-
stants. Only very recently more realistic time delays have
been considered. In Wang et al. (2012), the impact of
network-induced delays with data packet dropout and
disordering on the control of wide area closed-loop power
systems is studied. In Li and Chen (2017), Padhy et al.
(2017), damping controllers that compensate realistic com-
munication delays are designed. It is important to capture
the actual behaviour of delays because constant and time-
varying delays may affect the system stability unexpect-
edly, even if they are within the same range. This nonlinear
behaviour is known as the Quenching Phenomenon (QP)
(Papachristodoulou et al., 2007).

The impact of time delays on power system stability is not
an easy task to solve. To this aim there are basically two
broad approaches. Time domain and frequency domain
analyses. The former is relatively easier to implement,
provided that an appropriate implicit integration scheme



is utilized (Bellen and Zennaro, 2003). Frequency domain
approaches are also involved as they require the solution
of a transcendental characteristic equation, with infinitely
many roots and thus, only an approximation of the solu-
tion is possible (Milano and Anghel, 2012). In this paper,
we consider both approaches.

In the literature, the impact of time delays on the stabil-
ity of power systems has been mostly studied based on
Lyapunov-Krasovskii Functionals (LKFs). Nevertheless,
these functionals tend to be overconservative while time-
domain and eigenvalue-based approaches appear delay-
model dependent and, thus, are more adequate than
LKFs to take into account the idiosyncrasies of time-
varying delays (Liu and Milano, 2018). Comparison among
eigenvalue-based methods have featured that the Cheby-
shev discretization of the partial differential equation
representation of Delay Differential-Algebraic Equations
(DDAEs) gives promising results (Liu et al., 2018). For
this reason, the Chebyshev discretization is also utilized
in this work.

1.3 Contributions

The novel contributions of the paper are as follows.

• A thorough comparison of the impact on tran-
sient and small-signal stability of constant and time-
varying stochastic delays in centralized WADCs. This
extends the results obtained in (Liu et al., 2018),
where only decentralized PSSs are considered.

• A Monte Carlo-based technique that attempts to
define the small-signal stability of time-varying delays
through stochastically distributed constant delays.

1.4 Organization

The remainder of the paper is organized as follows. Section
2 outlines the dynamic model of power systems and the
implemented WADC scheme based on H∞ control. Sec-
tion 3 recalls the mathematical background to study the
stability of a set of DDAEs and describes the constant and
time-varying stochastic delay models considered in this
work. The case study is discussed in Section 4 through
time-domain simulations and small-signal stability analy-
sis (SSSA) based on the well-known 2-area system (Kun-
dur, 1994). The sensitivity of the damping performance to
the delay models, the closed-loop stability and a method
to improve the constant delay results are also discussed
in Section 4. Finally, in Section 5 the main results of the
paper are summarized and conclusions are duly drawn.

2. POWER SYSTEM AND WADC MODELS

2.1 Modeling of power systems

Power systems can be described through a set of Differen-
tial Algebraic Equations (DAEs):

ẋ = f(x,y,d,u)
0 = g(x,y,d,u) ,

(1)

where f (f : Rn+m+q+p → Rn) are the differential
equations, g (g : Rn+m+q+p → Rm) are the algebraic
equations, x, x ∈ Rn, and y, y ∈ Rm, are the state

and algebraic variables, respectively; d, d ∈ Rq, are
uncontrollable inputs, e.g., noise and load variations; and
u, u ∈ Rp, are the controlled inputs, e.g., regulator input
references. Differentiating (1) around an equilibrium point
gives:

ẋ = fx∆x+ fy∆y + fd∆d+ fu∆u

0 = gx∆x+ gy∆y + gd∆d+ gu∆u ,
(2)

where fx, fy, fd, fu, gx, gy, gd, and gu are the system
Jacobian matrices. The state matrix A is obtained with
the elimination of algebraic variables from (2):

∆ẋ = A∆x+B1∆d+B2∆u , (3)

where A = fx − fygy
−1gx, B1 = fd − fygy

−1gd and
B2 = fu − fygy

−1gu. The form of (3) leads to a much
simpler and more conventional state space representation
of the Multiple-Input Multiple-Output (MIMO) system
as described in the next section. However, the matrices
that appear in (2) are much sparser than A, B1 and
B2, and hence (2) is the form utilized in the software
implementation numerical analysis carried out in this
paper.

2.2 H∞ Control Scheme

The well-known H∞ control is basically an optimization
problem that synthesizes a stabilizing controller K(s)
which minimizes the H∞ norm of the closed-loop transfer
matrix from the disturbance d to the output z for a given
open loop plant P (s) through the measurements w (see
Fig. 1). In general, z and w are nonlinear functions of a
subset of the system variables.

u

d

w

z

K(s)

P (s)

Fig. 1. Block diagram of the H∞ control scheme.

The minimization of the H∞ norm implies the minimiza-
tion of the maximum energy amplification ratio between
d and z. The MIMO state space realization of P (s) is

∆ẋ = A∆x+B1∆d+B2∆u

∆z = C1∆x+D11∆d+D12∆u

∆w = C2∆x+D21∆d+D22∆u

(4)

The following assumptions are made (Zhou and Doyle,
1998):

(1) For the existence of stabilizing controllers, the pairs
(A, B2) and (C2, A) must be stabilizable and de-
tectable, respectively.

(2) D12, D21 must be left and right invertible, respec-
tively. This means that the penalty on z includes a
non-singular penalty on the control u and that the
measurement signal w includes non-singular plant
disturbance.

(3) The matrices
[

A− jωI B2

C1 D12

]

, and

[

A− jωI B1

C2 D21

]



must be left and right invertible, respectively, ∀ω ∈ R.

The structure of the resulting controller feedback dynamic
gain K(s) in Fig. 1 is:

∆ẋc = Ac∆xc +Bc∆w

∆u = Cc∆xc +Dc∆w .
(5)

2.3 Design of the WADC

In this study, the disturbance d is a step variation of the
field voltage (vf ) of a given synchronous machine. The
measurement signal w is selected as the frequency devia-
tion at the point of common connection of the generator
and the grid:

∆ω = ω − ωref . (6)

As discussed above,w also includes full measurement noise
that depends on the disturbance d. The control signal
is considered as an additional input to the Automatic
Voltage Regulator (AVR) reference (see Fig. 2):

vref = vref0 + vwadc . (7)

+
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Fig. 2. Block diagram of applied control.

Finally, the output z includes the speed deviation of the
machines, with the aim of drastically damping the electro-
mechanical oscillations.

The following remarks are relevant:

• The use of geometric measures of controllability/
observability is probably the best method to select the
most effective stabilizing signals and control locations
(Heniche and Kamwa, 2008).

• The design of a dynamic controller and/or its formu-
lation as a Linear Matrix Inequalities (LMI) problem
with a number of constraints would be likely to give
better damping of the swings.

Other choices for d, z and w are possible. However, the
development of a novel WADC is out of the scope of this
paper. Rather, the focus is on a systematic analysis of the
impact of approximated and accurate delay models on the
stability of the overall system including the WADC. For
the sake of comparison, we utilize a set of d, z and w that
have been considered in the literature and proved to work
well when no delays are considered.

3. DDAES AND DELAYS MODELING

The resulting closed-loop system combines (1) and (5)
plus the expressions of the measurements w, hence, the
vector of state and algebraic variables becomes x̂ = (x,xc)
and ŷ = (y,u,w), respectively. Introducing time delays
in the closed-loop system, changes the DAEs into a set

of DDAEs. The index-1 Hessenberg form is adequate to
model power systems with delays (Milano and Anghel,
2012):

˙̂x = f̂(x̂, ŷ, x̂d, ŷd)
0 = ĝ(x̂, ŷ, x̂d) ,

(8)

where x̂d and ŷd are the delayed state variables and
algebraic variables, respectively. Since d and z are only
utilized for the definition of (5), they are not included in
the expression of (8). Linearization around the operating
point gives:

˙̂x = f̂ x̂∆x̂+ f̂ ŷ∆ŷ + f̂ x̂d
∆x̂d + f̂ ŷd

∆ŷd

0 = ĝx̂∆x̂+ ĝŷ∆ŷ + ĝx̂d
∆x̂d , (9)

where f̂ x̂d
, f̂ ŷd

, ĝx̂d
are the delayed Jacobian matrices.

For the general case of multiple, time-varying delays, after
the elimination of algebraic variables ŷ and ŷd, we obtain:

˙̂x(t) = Â0x̂(t) +
r

∑

i=1

Âix̂(t− τi(t)) , (10)

where r ∈ N+; τi(t) : R+ → [τmin, τmax], 0 ≤ τmin < τmax.

In a WAMS, delays exist both in the input network mea-
surement units - controller (w) and the output network
controller - local actuators (u). In the following, without
loss of generality, delays are included only in the measure-
ment variables w.

The time-varying delays are modelled as:

τi(t) = τ0,i + τp,i(t) + τs,i(t) , (11)

where:

• The constant component τ0,i expresses the processing
time of the measurement unit plus the inevitable
delay imposed by the communication medium.

• The periodic component τp,i(t) implies that the data
packets are sent repeatedly in discrete time instants.

• The stochastic part τs,i(t) includes uncertainties and
noises during the transmission, as well as the proba-
bility of a dropout.

An example of time-varying delay is shown in Fig. 3. The
interested reader can find more detail on this model in Liu
et al. (2018).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

τ
(t
)
[s
]

Fig. 3. Realistic WAMS delay.

4. CASE STUDY

The test system employed for our simulations is illustrated
in Fig. 4. This system has been set up to show significant
interarea oscillations (Kundur, 1994) and thus, has been



widely deployed in studies of this kind. It consists of 2
areas connected through bus 8, 11 buses and 4 generators
connected at the medium voltage level of 20 kV, while the
high voltage transmission system operates at 230 kV.

Frequency measurements are periodically sent from the
measurement units installed on the four terminal buses
of the generating units. The WADC implements the H∞

optimization and the output control signals are sent to
the respective AVRs, as described in Section 2. Based on
the discussion given in Section 3, the WADC includes four
time delays and the time dependency τi(t) of each delay is
given by (11).

G1 7 9861 5 10 11 3

42

WADC

G2 G4

G3

Fig. 4. Two-area four-machine test system.

All simulations in this Section were carried using Dome,
a Python-based software tool for power system analysis
(Milano, 2013).

4.1 Time-Domain Simulation

The tripping of one of the high voltage transmission lines
that connects buses 7 and 8 is considered. The contingency
occurs at t1 = 0.2 s and the normal operation is restored
at t2 = 0.3 s. In Figs. 5 - 7, the angle frequency of G1 (ω1)
is plotted for different scenarios.

Figure 5 shows the effect of the applied contingency with
and without WADC and no delays. In the ideal case of
instantaneous transmission of the signals, the damping
of electro-mechanical oscillations is significantly improved
with the addition of the WADC. This ideal scenario serves
as a reference for the remainder of this section.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
Time [s]

0.9997

0.9998

0.9999

1.0

1.0001

1.0002

1.0003

A
n
gl
e
fr
eq
u
en
cy

ω
1
[p
u
]

with WADC

without WADC

Fig. 5. Rotor speed of G1 with delay-free WADC and
without WADC.

The following constant delay scenarios are considered next:

• All delays have equal magnitudes, τ0.
• The delays have different magnitudes and their mean
value is τ̄ = τ0.

Simulation results are presented in Fig. 6. The magnitude
of the equal delays in this case is τ0 = 180 ms. The
different constant delays vary from 90 to 270 ms. In
both scenarios, the electro-mechanical swings are poorly
damped. In this case, however, the equal delay scenario
is more conservative. It is thus important to consider
multiple-delay DDAEs, as considering a unique delay for
all measured signals of the system can lead to inaccurate
results.
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Fig. 6. Rotor speed of G1 with equal and different constant
delays (τ̄ = 180 ms).

We now consider realistic time-varying delays, as in (11).
Based on (Liu et al., 2018), we assume that each delay has
a constant component 130 ms, a periodic component with
frequency 20 Hz and a stochastic component determined
by a Gamma distribution with shape and scale parameters
k = 2 and θ = 0.02, respectively. Moreover, the periodic
part of the delay is assumed to have 10% data dropout
rate. The expected value of the resulting delay is 200 ms.

The rotor speed G1 is shown in Fig. 7. The realistic
WAMS delay and constant delay scenarios are compared.
For the constant delay scenario, τ0 = 200 ms is assumed
for all signals. In this case, the constant delay model shows
a negative damping, while the system with the realistic
WAMS delays is stable, although poorly damped.
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Fig. 7. Rotor speed of G1 for realistic WAMS delays
(τ̄ = 200 ms).

From the results obtained in Figs. 5-7, the following
observations are relevant:

• The introduction of the signal delays, no matter what
model is assumed for the delays, deteriorates the
performance of the WADC.

• The equal constant delay model is the most con-
servative of the considered scenarios. Based on the



observation of Fig. 7, this may lead to assume even
that the system is unstable even when it is not.

4.2 Small-Signal Stability Analysis

The time domain simulation, while it allows considering
detailed delay models, can be time consuming, especially
if sensitivity and/or Monte Carlo analyses are considered.
These can be conveniently evaluated through a closed-loop
SSSA.

The rightmost eigenvalues for the scenario of equal con-
stant (180 ms) delays is shown in Fig. 8. The system
presents three pairs of poorly damped eigenvalues.
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Fig. 8. Rightmost eigenvalues for the 2-area system with
WADC and equal constant delays (180 ms).

The eigenvalue analysis is conducted several times by in-
creasing τ0. Figure 9 compares the real part of the complex
dominant eigenvalue for equal constant and stochastic
WAMS delays.

0.2 0.4 0.6 0.8 1.0

Time delay [s]

−1.5

−1.0

−0.5

0.0

0.5

1.0

R
ea
l
p
ar
t

Equal constant delays

Stochastic delays

Fig. 9. Real part of the dominant eigenvalue Re{λc} for
equal constant delays and stochastic WAMS delays
as τ0 varies.

For both models, the real part of the critical mode Re{λc}
exhibits a maximum with respect to τ0. The most un-
favourable conditions for the stability of the system are
for τ0 = 450 ms and τ0 = 500 ms for the stochastic and
constant models, respectively. The results obtained with
the constant delays model is always more conservative
than the detailed model in the region of τ0 that is typical
of WADC, i.e., for τ0 > 100 ms.

The constant delays model is clearly attractive for the
relative simplicity of its implementation. On the other
hand, the realistic WAMS delay model, while accurate, is
mathematically more involved and numerically less robust.

It is worth noticing, in fact, that to obtain the dashed line
shown in Fig. 9 is not straightforward. To this aim, we
have utilized a Newton correction method that refines the
approximated results obtained with the approximation of
the time varying delays as distributed delays (Liu et al.,
2018). The ability to converge to the correct eigenvalue
and the accuracy of such a technique highly depends on
the initial guess made for the delays and their eigenvectors.
The larger the value of τo, the more difficult to find an
adequate initial guess. 1 For this reason, the stochastic
WAMS model plotted in Fig. 9 uses a simplified version
of the realistic model presented in Section 3, without the
periodic component, the addition of which would make the
analysis untractable.

4.3 Monte Carlo SSSA with Constant Delays

Section 4.1 discusses the effect of multiple constant de-
lays with unequal magnitudes on the performance of the
WADC. In this section, we further elaborate on this sce-
nario by assuming that the four delays are constant in a
given period, but that their values are stochastically dis-
tributed following a Gamma distribution. A Monte Carlo
stability analysis is carried out based on 4000 simulations
for different magnitudes of delays.

The results are summarized in Table 1. The system is
always stable for τ̄ = 100 ms. For τ̄ = 200 ms, the system
is stable for the stochastic WAMS delays and unstable
for equal constant delays. The stochastically distributed
delay model reduces the conservativeness obtained with
the equal delay model, as the system is expected to be
stable with a probability of 29.30%. For higher τ̄ , the
system becomes unstable for both equal constant and
stochastic WAMS delays (see Fig. 9). The stochastically
distributed delay model captures the instability in 99.65%
and 99.77% of the simulations for τ̄ = 300 and τ̄ = 400
ms, respectively.

Table 1. Monte Carlo SSSA.

θ 0.01 0.02 0.03 0.04

τ̄ = k · θ [s] 0.1 0.2 0.3 0.4

% stable 100.00 29.30 0.35 0.23

Finally, we consider the distribution of the real part of the
most critical eigenvalue Re{λc} for k = 10, θ = 0.04 and
τ̄ = 400 ms. The probability density and the cumulative
probability of Re{λc} as obtained with the Monte Carlo
method are shown in Figs. 10 and 11.

The obtained histogram in Fig. 10 is asymmetrical. It is
calculated that:

P (0.189 ≤ Re{λc} ≤ 0.534) = 92.38% ,

which is the probability that Re{λc} falls between 0.189
and 0.534, which are the values of Re{λc} for the real-
istic WAMS delay and the equal constant delay models
according to Fig. 9. This results can be interpreted as the
probability that the configuration of the multiple unequal
delays reduces the conservativeness of the equal constant
delays model.

1 We have utilized a 4th order Padé approximant for the definition
of the initial guesses.
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Fig. 10. Probability density of Re{λc}.
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Fig. 11. Cumulative probability of Re{λc}.

5. CONCLUSION

The paper discusses the impact of multiple time delays on
the dynamic performance of a centralized WADC and the
stability of the overall power system. This performance
is evaluated through time domain simulations, while the
impact of time delays on the system stability is studied
through a SSSA and considering several scenarios.

As expected, typical communication delays of the order
of few hundreds of milliseconds lead to potentially poorly
damped and even unstable WADCs. A novel result of this
paper is that the difference between poor damping and
instability highly depends on the model of the delay.

The conventional and widely utilized model that considers
the same constant delay for all measured signals appears
to be quite conservative with respect to a precise repre-
sentation of the time-varying and stochastic components
that characterize communication delays. Unfortunately,
the numerical volatility of the realistic delay model makes
its utilization a time consuming challenge.

The probabilistic analysis approach that considers a Monte
Carlo method and constant stochastic delays following a
Gamma distribution appears as a promising compromise
between accuracy and numerical robustness. We will ded-
icate future work to further develop this approach.
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