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Abstract: The paper examines the effectiveness of utilizing the derivatives of time delayed, wide-area
signals in mitigating their destabilizing impact on power system dynamic response. In particular,
the paper discusses two derivative control-based delay compensation methods, namely
proportional-derivative (PD) and predictor-based delay compensation. The two methods are
compared in terms of their open-loop signal fidelity and their impact on the closed-loop system
stability. The paper also provides a technique to carry out small-signal stability analysis with inclusion
of derivative control based compensation, which leads to a Neutral Time-Delay System (NTDS).
In addition, we provide a new theorem on the stability of the NTDS. Finally, nonlinear time domain
simulations and eigenvalue analysis based on the IEEE 14-bus and New England 39-bus systems
were carried out for the sake of comparison of the two delay compensation methods.

Keywords: delay compensation; proportional-derivative (PD) control; predictor-based control;
small-signal stability analysis; Neutral Time-Delay System (NTDS)

1. Introduction

1.1. Motivation

Communication delays introduced into power systems can be divided into closed-loop and
open-loop delays. Closed-loop delays appear in controllers fed by remote signals, such as in wide-area
damping controllers [1,2]. These delays can significantly decrease the damping of oscillatory modes,
and even lead to system collapse. Open-loop delays appear in on-line monitoring and stability
assessment [3–6]. These delays distort the original signals and therefore result in errors for the on-line
monitoring and stability assessment. These errors may mislead the Transmission System Operators
(TSOs) and thus impact on the operation and reliability of the overall power system. Accordingly,
the main objectives of delay compensation methods aiming at mitigating the negative impact of
communication delays on power systems are twofold, namely to avoid the unstable issues resulting by
the closed-loop delays and to improve the fidelity of the signals impacted by the open-loop delays.
The derivative (D) term of the conventional PID controller has been proved to be a simple but effective
method to compensate time-delays. Several D-term-based delay compensation methods have been
developed [7–9]. Their application to power systems is limited, and no systematic method for their
evaluation has been presented thus far. This paper proposes an approach to evaluate the effect of
D-term-based delay compensation, on both closed-loop and open-loop delays in power systems.
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1.2. Literature Review

1.2.1. Communication Delays in Power Systems

Communication delays in power systems result from a series of processes along the data
communication, from the measurement device to the control center, including long-distance data
delivery, data packet dropout, noise, communication network congestion, etc. [10]. Due to these
phenomena, such delays are time-variant. For the sake of simplicity, many studies have considered
communication delays as constant [11–13]. In [8,14,15], communication delays are modeled through
stochastic processes. However, a precise delay model is required in order to obtain an accurate stability
assessment of a time-delay system [16,17]. The authors of [10,18], with thorough discussions on the
communication process of Wide-Area Measurement System (WAMS) and data from a real-world
power system, pointed out that the magnitude of communication delays in power systems is affected
by the random data packet dropout and stochastic network-induced latency. A data-packet based
delay model that accounts for these random and stochastic issues is provided in [19]. In the remainder
of the paper, D-term-based delay 43 compensation methods are tested with the realistic communication
delay model proposed in [19].

1.2.2. Compensation of Delays in Control Loops

Robust wide-area controllers have been proposed to mitigate the negative impact of closed loop
delays [20]. However, control design for improved robustness against time-delays may deteriorate
the overall dynamic response of the system [21]. Consequently, conventional controllers with external
delay compensation often perform better than robust controllers. Another approach that has been
commonly utilized to compensate delays in control loops is the use of predictive controllers [22–24].
Nevertheless, most predictive controllers are model-dependent and, thus, their effectiveness relies on
the availability of an accurate dynamic model and the parameters of the system, which is not the case
in power systems. Therefore, model-independent delay compensation methods are more practical for
53 power system applications. Moreover, Chaudhuri et al., showed that the model-independent delay
compensation methods can perform equally well or even better than model-dependent ones [25].

1.2.3. Compensation of Delays in on-Line Monitoring

The extent of similarity between an originally sent signal and the signal actually received can be
expressed in terms of fidelity [26]. In common practice, fidelity is utilized as a measure of the degree
of amplitude and phase angle deviations of the input signal of amplifiers. With this regard, delays
impact on the amplitude and phase angle of a signal by introducing a time shift. Moreover, as we
show in the example and case study, the delay compensation introduces an amplitude distortion
which can be conveniently quantified in terms of fidelity. Finally, we note that, in the literature, fidelity
has been already used in the context of delayed dynamic systems (see, e.g., [9]). Methods that focus
on the improvement of signals fidelity have been rarely considered in the power system literature.
Meanwhile, the communication system community focuses on achieving high signal fidelity through
new technologies, such as 5G and quantum communication. D-term-based delay compensation
methods, including PD [7] and model-independent predictor-based compensation [9], have been
developed to improve the signal fidelity in networked control systems. In this paper, we discuss the
application of PD and D-term predictor-based compensation in power systems.

1.2.4. D-Term-Based Delay Compensation

In classical control, one of the main limitations of utilizing the D-term is its sensitivity with respect
to input noise. However, with the development of filtering techniques [27–29], the noise introduced in
signals can be largely mitigated. In addition, most signal-sending devices in power systems, such as
Phasor Measurement Units (PMUs), are already equipped with proper filters [30]. In this context, the
application of D-term-based delay compensation schemes becomes a feasible solution.
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On the other hand, the unpredictable impact on the stability of the overall system can be a
problem for the D-term to compensate the closed-loop delay in power system. From a mathematical
viewpoint, since D-term delay compensation methods introduce the derivatives of delay variables,
the system becomes Neutral Time-Delay System (NTDS) [31]. There is no general theoretical proof
that the transformed NTDS will have enhanced stability properties. To evaluate the stability of the
power system with the derivatives of delay variables, Roy et al., proposed a Lyapunov–Razumikhin
functional approach [8]. The method, however, is not suitable for real-world power systems, due to
its rapidly increasing complexity of function construction with the size of the system. Alternatively,
The authors of [32,33] proposed a practical method to solve the eigenvalue analysis of NTDSs, which
is simpler and more efficient. This paper is based on eigenvalue analysis and provides a systematic
method to solve the small-signal stability analysis of power systems with inclusion of D-term based
delay compensation.

1.3. Contributions

This paper proposes systematic approaches to evaluate the effectiveness of model-independent
D-based delay compensation methods for power systems. In particular, it discusses the performance
of two compensation methods, namely PD [7] and predictor-based compensation [9]. The specific
contributions of the paper are the following:

• A discussion on the maximum fidelity that the two delay-compensation methods for wide-area
controllers can achieve is presented.

• A technique to solve small-signal stability analysis of power systems with inclusion of either
constant or realistically-modeled communication delays in the derivatives of the state variables
is proposed.

• A new theorem on the stability of the NTDS is derived.
• A thorough comparison of the performance of PD and predictor-based delay compensation

methods in power systems, including both open-loop and closed-loop scenarios, is shown.

1.4. Organization

The paper is organized as follows. Section 2 introduces the two D-term-based delay-compensation
method, and describes the small-signal stability analysis approach for the power systems with inclusion
of the D-based delay compensation. Section 3 compares the effect of these two delay-compensation
methods on the signal fidelity improvement through a simple numerical example. Section 4 discusses
the practical implementation of the D-based compensation at the receiving end of a WAMS. In Section 5,
the IEEE 14-bus system and the New England 39-bus system are utilized to compare the dynamic
behaviors of the proposed delay-compensation methods. Finally, Section 6 draws conclusions and
outlines future work.

2. D-Based Delay Compensation Methods and Small Signal Stability

This section provides the formulation of model-independent delay compensation methods,
namely the PD method proposed in [7] and the predictor-based method proposed in [9]. Both methods
are assumed to be implemented at the signal receiving end. Figure 1 illustrates the implementation of
the compensation methods, where x is the original signal, τ is the communication delay, and xcom is
the compensated signal.

Communication

System

Delay

Compensation

ReceivingSending

EndEnd

x(t) x(t − τ) xcom(t)

Figure 1. Implementation of D-based delay compensation methods.
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2.1. Power System Model with Inclusion of Delays

The dynamic behavior of a power system with inclusion of time-delays can be studied through a
set of Delay Differential Algebraic Equations (DDAEs), as follows:

ẋ(t) = f
(
x(t), y(t), xd(t), yd(t)

)
0m = g

(
x(t), y(t), xd(t), yd(t)

)
,

(1)

where f : R2n+2m → Rn are the differential equations; g : R2n+2m → Rm are the algebraic equations;
x ∈ Rn are state variables; y ∈ Rm are algebraic variables; and 0m is a column of m zeros. For simplicity,
the following discussion focuses on the case of a single constant delay τ.

Differentiating Equation (1) around a given equilibrium point, we get:

∆ẋ = f x∆x + f xd
∆xd + f y∆y + f yd

∆yd

0m = gx∆x + gxd
∆xd + gy∆y + gyd

∆yd .
(2)

The linearized system in Equation (2) can be written in the following form of Delay Differential
Equations (DDEs) with multiple delays [32]:

∆ẋ = L0∆x + L1∆xd +
∞

∑
k=2

[Lk∆x(t− kτ)] , (3)

where
L0 = f x + f yL ,

L1 = f xd
+ f yd

L + f yP ,

Lk = QNk−2P, k ≥ 2,

and
L = −g−1

y gx , M = −g−1
y gxd

,

N = −g−1
y gyd

, P = M + NL ,

Q = f yN + f yd
.

2.2. PD Delay Compensation

Consider a signal x(t), x ∈ R. If the delayed signal is xd(t) = x(t− τ), the signal compensated by
the PD method can be described as:

xcomA(t) = xd(t) + Kτ ẋd(t) , (4)

where Kτ is the compensation gain. Selection of a value of Kτ that is around the magnitude of the
delay τ typically yields the best dynamic performance [34]. The rationale behind this rule is given
below. We have:

x(t) = x(t− τ + τ)

≈ xd(t) + τẋ(t) +O(τ2) ,

where O(τ2) = τ2

2 ẍ(t). If x is a state variable and the constant delay τ is small, namely τ2

2 ẍ(t) → 0,
the following approximation holds:

x(t) ≈ xd(t) + τ ẋ(t) .
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At the receiving end, the time derivative of the non-delayed signal is unknown, thus we assume
the following approximation:

ẋ(t) ≈ ẋ(t− τ) ,

which leads to rewriting Equation (4) as:

x(t) ≈ xd(t) + τ ẋd(t) . (5)

Comparing Equation (5) with Equation (4), one can consider Kτ ≈ τ. If τ is time-varying, then Kτ

can be set around the mean value of the delay τ̄.

2.3. Predictor-Based Delay Compensation

The predictor-based delay compensation is given by:

ẋcomB(t) = ẋd(t) + Ka
[
xd(t)− xcomB(t− τ)

]
. (6)

For the constant delay case, Zheng et al., [9] proved that, to ensure the convergence of the predictor
error, the compensation gain Ka should be within the range:

0 < Ka τ <
π

2
.

Similarly, for the time-varying delay case, one can use:

0 < Ka τ̄ <
π

2
,

where τ̄ is the mean value or, alternatively, the maximum value of the time-varying delay. However,
since the above inequality is often too conservative, especially in the case of time-varying delays, it
is preferable to verify the convergence of the predictor-based compensation of time-varying delays
through numerical tests.

2.4. Power System Model with Inclusion of Delay Compensation

If the delay-compensation technique is applied to a power system, the delayed variables x(t−
τi) in Equation (3) are replaced by the compensated variables. Thus, the standard form for the
small-signal model of the power system implemented with the proposed delay compensation is a
Neutral Time-Delay System (NTDS). The derivative terms that appear in the delay-compensation
methods, namely Equations (4) and (6), lead to the following formulation:

ẋ(t) = F
(

x(t), y(t), xd(t), yd(t), ẋd(t)
)

0m = G
(

x(t), y(t), xd(t), yd(t), ẋd(t)
)

,
(7)

where F : R3n+2m → Rn are the differential equations and G : R3n+2m → Rm are the algebraic
equations. We refer to this system as the compensated system. We state the following Theorem:

Theorem 1. We the consider system in Equation (1), in which we apply a derivative control based
delay-compensation technique. The system that appears has the form of Equation (7), which is a NTDS. Following
a small disturbance into the compensated system, a necessary and sufficient condition for the equilibrium solution
to be asymptotically stable is that the real parts of all roots of the determinant of ∆(λ) are negative, where ∆(λ)
is given by:

∆(λ) = λIp −A0 − e−λτA1 −
∞

∑
k=2

e−λkτAk , (8)
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where F ≡ F, G ≡ G for ẋd(t) = ỹd(t), and

A0 =F x +Fy A ,

A1 =F xd +Fyd
A +FyD ,

Ak = ECk−2D, k ≥ 2,

with
A = −F−1

y F x , B = −F−1
y F xd ,

C = −F−1
y Fyd

, D = B + CA ,

E = FyC +Fyd
.

The series in Equation (8) converges if ρ(C) < 1, where ρ(·) is the spectral radius of the eigenvalues of a
matrix.

The proof can be found in the Appendix A.

Remark 1. The matrix function in Equation (8) is the characteristic matrix [31]. Ip is the identity matrix of
order p. The solutions of Equation (A3) are called the characteristic roots or spectrum.

Remark 2. If the series in Equation (8) converges, the critical eigenvalues that have the largest real parts can be
obtained through a Chebyshev discretization method, as described in [13].

3. Fidelity Comparison

This section discusses the effect of the PD and predictor delay compensation methods on the
fidelity of a received signal. To quantify the fidelity improvement, Zheng et al., [9] established a
normalized performance index p, as follows:

p =
||xcom − x||2
||xd − x||2

. (9)

If p < 1, the compensation improves the fidelity of the received signal. The smaller is the value of
p, the more accurate is the compensation effect.

Illustrative Example

To illustrate and compare the fidelity of Equations (4) and (6), let us consider the following
simple signal:

x(t) =

{
0, if t < 0

sin(t), if t ≥ 0
(10)

xd(t) = x(t− τ) ,

with τ = 0.5 s.
According to the discussions in Sections 2.2 and 2.3, we consider the following range of the

compensation gains: Kτ ∈ [0, 1] and Ka ∈ [0, 3.14]. Figure 2 shows the variations of the performance
index p computed based on the received signals in [τ, 5π] s as the compensation gain varies.
The PD-based method provides the best performance for Kτ = 0.50, with a corresponding performance
index p = 0.2588. The predictor-based method shows the best performance for Ka = 2.59, with a
performance index p = 0.4942. Figure 3 shows the trajectories of the compensated signals obtained
with the methods, for Kτ = 0.50 and Ka = 2.59, respectively.
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0.00 0.20 0.40 0.60 0.80 1.00
Kτ

0.2

0.4

0.6

0.8

1.0
p

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Ka

0.4

0.6

0.8

1.0

p

Figure 2. Illustrative Example. Performance index p for t ∈ [τ, 5π] s of D-based compensation
methods as the compensation gains vary: (top) PD-based compensation; and (bottom) predictor-based
compensation.

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00
Time [s]

−1

0

1

x

x

xd
xcomA

xcomB

Figure 3. Illustrative Example. Trajectories of sending (x), delayed (xd), PD-based compensated (xcomA ),
and predictor-based compensated (xcomB ) signals.
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Figure 3 shows that both methods effectively compensate the phase lag induced by the time-delay.
However, they introduce small errors on the amplitudes of the periodic signal. These small errors can
be fixed through higher-order compensation [7], the study of which, however, is out of the scope of the
paper. The PD compensation achieves a relatively smaller amplitude error and, thus, a better fidelity,
especially during the first swing.

4. Wide-Area Measurement Delay Compensation

4.1. Wide-Area Measurement Delay Model

Figure 4 shows a time-varying WAMS delay model according to the wide-area communication
process discussed in [19].

Data Packet 

Generator

Measurement

Device

Zero−order

Holder Transmission

Data

Sending End

Power System

WAMS

Receiving End

x(t)

xd(t)

Figure 4. WAMS elements and their interaction with the power system.

The signal x(t), which we assume to be a state variable of the DDAE system defined in Equation
(1), is collected at a given sampling rate and digitized as data packets. Each packet is then transmitted
through a communication network and processed through a zero-order holder (ZOH), which helps
to avoid dynamic issues resulting from the possibility that the data packet is lost. Latency arises
during this process. The resulting signal at the receiving end can be presented as x(t− τ(t)). Although
the communication process in Figure 4 is digitized, appropriate modeling of the time-varying delay
τ(t) allows treating the WAMS-based control loop as a part of the continuous model. Under some
simplifying assumptions, a time-varying WAMS delay τ(t) can be modeled as follows:

τ(t) = τo + τs(t) + τp(t) , (11)

where τo is the constant delay for each data packet; τs(t) is a stochastic function that results from
network-induced noise and uncertainties, as well as the probability of a data packet loss; and τp(t) is a
quasi-periodic sawtooth function that is equal to the time past the receiving of the latest data packet.

Figure 5 shows the time dependency of a typical WAMS delay. In this example, τo = 70 ms; τs is
Gamma distributed with scale factor a = 10 ms and shape factor b = 2; and τp has a period T = 20 ms
and dropout rate c = 10%. The mean value of the WAMS delay τ(t) is:

τ̄ = τo +
ab

1− c
+

T
2(1− c)2 = 104.57 ms . (12)
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Figure 5. Trajectories of a typical WAMS delay within 1 s.

Replacing in the characteristic matrix in Equation (A3) the constant delay τ with the time-varying
delay in Equation (11) yields:

∆(λ) = λIn − A0 −
∞

∑
k=1

e−λkτo hp(λ)hs(λ)Ak , (13)

where

hp(λ) =
1− c
Tλ

[
1 + (c− 1)

e−λT

1− c e−λT

]
,

hs(λ) =

(
1 +

a
1− c

λ

)−b
.

The critical eigenvalues of Equation (13), however, need to be determined with an iterative
technique [19]. The accuracy of the resulting critical eigenvalues heavily relies on the choice of the
initial guess for λ.

4.2. Implementation of the Delay Compensation

For clarity, the schemes of the PD and predictor-based compensation are shown in Figures 6 and 7,
respectively.

Xd(s) XcomA
(s)

sKτ

+

+

Receiving EndSending End

Figure 6. PD delay compensation diagram.

e
−sτk

s

Ka

1

s

−

+

ReceivingSending

EndEnd

Xd(s) XcomB
(s)

Figure 7. Predictor-based delay compensation diagram.
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Both compensation methods require the first derivative of the delayed signal. As discussed in
Section 4.1, the transmission of a signal in WAMS is digitized. Assuming that a data packet arrives at
time tk, before receiving the next packet at tk+1, the first derivative of the delayed signal utilized by
the compensation methods can be set as:

ẋ(t) ≈ x(tk)− x(tk−1)

tk − tk−1
, t ∈ [tk, tk+1] . (14)

The predictor-based delay compensation also includes a feedback on the predictor error with
delay τk. In general, such a delay is different for each received data packet and its magnitude can be
obtained from the time stamp of the data packet itself [25].

5. Case Study

This section provides a thorough comparison of the performances of the PD and predictor-based
compensation methods in power system applications. Section 5.1 focuses on the stability impact
of the two methods on the IEEE 14-bus system. Section 5.2 studies the best fidelity that the
compensation methods can achieve and their effect on the inter-area oscillation modes of the New
England 39-bus system.

All simulations in this section were obtained using the Python-based software tool DOME [35].
The DOME version utilized here was based on Fedora Linux 25, Python 3.6.2, CVXOPT 1.1.9, KLU 1.3.8,
and MAGMA 2.2.0. The hardware consisted of two 20-core 2.2 GHz Intel Xeon CPUs, which were
utilized for matrix factorization and Monte-Carlo time-domain simulations; and one NVIDIA Tesla K80
GPU, which was utilized for the small-signal stability analysis.

5.1. IEEE 14-Bus System

In this section, the IEEE 14-bus system model serves to illustrate the stability impact of the
derivative term of the two compensation methods discussed in Section 2. The static and dynamic data
of this system can be found in [36]. The system includes one Power System Stabilizer (PSS), which is
fed by the rotor speed error of the synchronous machine connected at bus 1. The system with the PSS,
and without inclusion of any delay, is stable. The most poorly damped complex pair of eigenvalues
has damping ratio ξ = 9.37%.

5.1.1. Constant Delay

Assume a constant delay τ introduced in the input signal of the PSS. The stability delay margin
of the 14-bus system is τ = 95 ms, and the delay margin for which the damping ratio is ξ ≥ 5%
is τ = 80 ms. To depict the effect of the delay compensation, the small-signal stability maps of τ

against the compensation gains are shown in Figure 8, where Ks is a unified quantity to normalize the
compensation gains for different values of τ. For PD compensation,

Ks =
Kτ

τ
, (15)

and, for predictor-based compensation,
Ks = Ka τ . (16)

The stability maps are obtained by carrying out small-signal stability analysis 30× 50 times, in the
intervals τ ∈ (0, 150] ms; Ks ∈ [0, 2] for PD; and Ks ∈ [0, 1.6] for predictor-based compensation.
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(a) PD compensation
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(b) Predictor-based compensation.

Figure 8. Stability maps τ − Ks of delay compensation methods for the IEEE 14-bus system. Shaded
regions are stable. Dark shaded regions indicate ξ > 5%. The dashed and dashed-dotted vertical lines
indicate the stability delay margin and the delay margin for ξ > 5%, respectively, of the system without
delay compensation.

Figure 8 shows the effect of the two methods. The PD appears to work better than the
predictor-based compensation for the 14-bus system. In particular, with a proper gain, the PD increases
the small-signal stability delay margin from 90 ms to 130 ms. On the other hand, the predictor-based
compensation cannot provide any improvement of the stability delay margin. The delay margin of
damping ratio ξ > 5% is increased from 80 ms to 95 ms by the PD and to 90 ms by the predictor-based
compensation.

5.1.2. WAMS Delay

Let us now assume that the control input signal of the PSS is obtained from a WAMS that
introduces the time-varying delay shown in Figure 5. In this scenario, the IEEE 14-bus system is
unstable, since the rightmost pair of eigenvalues is 0.2053± j11.1262.

Table 1 shows the rightmost eigenvalues of the IEEE 14-bus system with inclusion of WAMS
delay and delay compensation. In this table, a reference quantity Km is utilized to present the value
of the compensation gain, which is a referring maximum value of the compensation according to the
discussions in Section 2—Km = 2τ̄ = 0.2 for PD; Km = π

2τ̄ = 15 for predictor-based compensation.
According to Table 1, the PD can stabilize the time-varying delay system with Kτ ∈ [0.6Km, Km].
In addition, the damping ratio of all eigenvalues of the system with PD compensation and Kτ =
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0.8Km is ξ > 5%. On the other hand, similar to the results obtained for the constant delay scenario,
the predictor-based compensation is not effective in stabilizing the time-varying delay system.

Table 1. Rightmost eigenvalues of the IEEE 14-bus system with WAMS delay and delay compensation.
Km = 2 for the PD and Km = 15 for the predictor-based compensation.

Compensation Gain PD Predictor-Based

0.2 Km 0.1030± j11.2144 0.1841± j11.1718
0.4 Km 0.0133± j11.2987 0.1989± j11.1762
0.6 Km −0.1138± j11.4314 0.2285± j11.1854
0.8 Km −0.1328± j0.0343 0.2885± j11.2056
1.0 Km −0.1228± j15.2758 0.3494± j11.2279
1.2 Km 0.0626± j15.5234 0.4736± j11.2796

5.2. New England System

This section further discusses the dynamic response of the two delay compensation methods
through the New England 39-bus 10-machine system. The static and dynamic data of this system
can be found in [37]. The system has been divided into three areas, as shown in Figure 9. Each area
includes a PSS, at bus 39, 32, and 35, respectively, to damp the inter-area oscillations. The dynamic
behaviors of the 39-bus system shown in the rest of this section are following the N − 1 contingency
line 1–2 outage.

Figure 9. New England 39-bus 10-machine three-area system.

5.2.1. Constant Delay

Assume that the output signal of the PMU introduces a constant delay τ before arriving at a
control center. Figure 10 shows the best fidelity that the compensation methods can achieve and their
corresponding compensation gains against different values of τ. Figure 10 was obtained through
10× 40 time domain simulations for τ ∈ (0, 200] ms and Ks ∈ [0, 1.6]. The performance index p was
computed based on the trajectories of the signals from τ to 49 s after the contingency.
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Figure 10. Best compensation effects of the PLL at bus 39 with different constant delays for the New
England system.

Figure 10 shows that both compensation methods effectively improve the fidelity of the delayed
signal for τ ∈ [0, 200] ms. The PD achieves better fidelity than the predictor-based compensation.
Another advantage of the PD, as shown in Figure 10b, is that the optimal compensation gain is always
around the fixed quantity Ks = 1 for different scenarios, while the optimal gain of the predictor-based
compensation varies for different scenarios. Thus, in real-world applications, tuning of the parameters
of the PD is easier than that required by the predictor-based method.

5.2.2. WAMS Delay

Let us assume that the measurements are obtained through a WAMS and that the signals are
affected by time-varying delays, as shown in Figure 5. In this scenario, time domain simulation results
show that the the smallest fidelity of the PD (p = 0.37) is obtained for Kτ = 0.095. The predictor-based
compensation achieves the best fidelity (p = 0.4) for Ka = 12.5. Following the line outage,
the trajectories of the original, delayed, and compensated signals that yield their best fidelity, are shown
in Figure 11. Both methods are able to compensate the phase lag introduced by the delayed signal,
but the predictor-based compensation performs slightly worse than the PD, especially during the
first swings.
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Finally, we consider the scenario where the delayed signal from the PMU feeds the PSS of the
generator connected to bus 39. Figure 12 shows the trajectory of the rotor speed of synchronous
machine 1 with different input signals of the PSS. Results indicate that the time-varying WAMS delay
deteriorates the dynamic oscillations following the contingency. The PD compensation with Kτ = 0.095
and the predictor-based compensation with Ka = 12.5, respectively, yield the best overall dynamic
performance and effectively fully compensate the communication delay.
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Figure 11. Trajectories of the measured signals of the PMU installed at bus 39 of the New
England system.
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Figure 12. Trajectories of the rotor speed of the synchronous machine 1 of the New England system.

6. Conclusions

This paper demonstrates that a derivative term can effectively compensate communication delays
of wide-area controllers of power systems. To this aim, the time-domain and eigenvalue analysis
methods are utilized to evaluate the effect of the proposed delay compensation methods. The case study
provides thorough comparisons of the dynamic behavior of the PD as well as the predictor-based
compensation on power system applications. The PD performs better than the predictor-based
compensation, according to the scenarios considered in the case study.

These results show that the predictive compensation performs worse than the PD during the first
swing of the signal following a contingency. In power systems, the first one or two seconds, i.e., the first
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swing, following a contingency are the most critical part of the transient and a poor dynamic response
in the first swing can deteriorate the whole transient behavior of the system. Controllers that are most
effective during the first swing are thus to be preferred. It is important to note, however, that these
results do not imply that the PD compensation is always better than the predictor one. In fact, there
exist dynamic systems for which the predictive compensation works better than the PD compensation.
However, this is not the case of the scenarios considered in the paper. These scenarios represent, as far
as we appreciate and based on several tests, typical power systems applications.

Future work will focus on higher-order derivative compensation methods and on validating the
proposed compensation methods on hardware-in-the-loop tests.
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Appendix A

This appendix provides the proof of Theorem 1.

Proof. The derivative terms that appear in the delay-compensation methods, i.e., Equations (4) and
(6), lead to the formulation in Equation (7). Due to the presence of the independent variables ẋd(t),
Equation (7) is an NTDS. By introducing the extra equations:

0n = ỹ(t)− ẋ(t) ,

which also means that ẋd(t) = ỹd(t), the NTDS can be transformed into DDAEs in the form of Equation
(1). Then, one has:

F(x, y, xd, yd, ẋd) = F(x, y, xd, yd, ỹd)

G(x, y, xd, yd, ẋd) = G(x, y, xd, yd, ỹd) ,

and
F(x, y, xd, yd, ỹd) ≡ F (x, xd, ŷ, ŷd)

G(x, y, xd, yd, ỹd) ≡ G(x, xd, ŷ, ŷd) ,

where ŷ = (y, ỹ). Hence,
ẋ = F (x, xd, ŷ, ŷd)

0m+n = G(x, xd, ŷ, ŷd) ,

where F : R4n+2m → Rn; G : R4n+2m → Rm+n; and x ∈ Rn, ŷ ∈ Rm+n. Finally, we obtain the
following linearized system:

∆ẋ = F x∆x +F xd ∆xd +F ŷ∆ŷ +F ŷd
∆ŷd

0m+n = Gx∆x + Gxd ∆xd + G ŷ∆ŷ + G ŷd
∆ŷd .

(A1)

The small-signal stability of Equation (7) can be defined through the critical right-most eigenvalues
of the pencil of the linearized system in Equation (A1). The fourth and second authors [32] showed
that the linearized system in Equation (A1) can be written in the following form of DDEs with multiple
delays:

∆ẋ = A0∆x + A1∆xd +
∞

∑
k=2

[Ak∆x(t− kτ)] , (A2)
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where Ak, k = 0, 1, 2, ..., are given by:

A0 =F x +Fy A ,

A1 =F xd +Fyd
A +FyD ,

Ak = ECk−2D, k ≥ 2,

and
A = −F−1

y F x , B = −F−1
y F xd ,

C = −F−1
y Fyd

, D = B + CA ,

E = FyC +Fyd
.

Assuming the delay τ is constant, the roots of the determinant of ∆(λ) are the solutions of

det ∆(λ) = 0 , (A3)

where ∆(λ) is given by Equation (8). The system is stable at the given point if and only if all the
eigenvalues of Equation (8) have strictly negative real-parts. For asymptotic stable states, we have that
Re(λ) < 0, or, equivalently, since τ > 0, τRe(λ) < 0. Then,

|eτ[Re(λ)+iIm(λ)]| < |eiτIm(λ)| ,

or, equivalently,
|eτλ| < 1 .

The matrix series in Equation (8) can be written as:

∞

∑
k=2

e−λkτCk−1D =
( ∞

∑
k=1

[e−λ(k+1)τCk]
)
D .

Hence, the matrix series ∑∞
k=2 e−λkτCk−1D converges if and only if ∑∞

k=1 e−λ(k+1)τCk converges.
By applying the D’Alembert criterion, ∑∞

k=1 e−λ(k+1)τCk converges if:

limk→+∞

∥∥e−λ(k+2)τCk+1∥∥∥∥e−λ(k+1)τCk∥∥ < 1 ,

or, equivalently,

|e−λτ |limk→+∞

∥∥Ck+1∥∥∥∥Ck∥∥ < 1 ,

by using ‖Ck+1‖ ≤ ‖Ck‖‖C‖ we get:

|e−λτ |limk→+∞

∥∥Ck+1∥∥∥∥Ck∥∥ ≤ |e−λτ |limk→+∞

∥∥Ck∥∥∥∥C
∥∥∥∥Ck∥∥ < 1 ,

or, equivalently, ∥∥C
∥∥ < |eλτ | < 1 ,

or, equivalently, ∥∥C
∥∥ < 1 .

Hence, the matrix series ∑∞
k=2 e−λkτCk−1D in Equation (8) converges if ρ(C) =< 1 holds.
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