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A B S T R A C T

The paper focuses on the accuracy and stability of implicit numerical methods when utilized for the Time
Domain Integration (TDI) of power systems with inclusion of time delays. In particular, a small-disturbance
analysis technique is proposed to evaluate the numerical distortion that TDI methods induce to the dynamic
modes of power systems modeled as Delay Differential Algebraic Equations (DDAEs). The case study illustrates
the features of the proposed technique through simulations conducted using the IEEE 14-bus test system, and
considering three examples of implicit integration methods, namely Backward Euler Method (BEM), Implicit
Trapezoidal Method (ITM), and 2-stage Radau IIA.
1. Introduction

1.1. Motivation

Power system modeling and stability analysis in the presence of time
delays has attracted increasing attention in recent years, mainly due to
the potential negative impacts that measurement and communication
latency can have on the stability of automatic regulation loops, e.g. in
wide area damping controllers [1–7]. To date, the most successful
technique to evaluate the effect of time delays on the dynamic behavior
of a power system following a disturbance is to carry out a TDI of
the system’s equations through a suitable numerical scheme. However,
it is known that delays can worsen the accuracy and even make
unstable otherwise very robust numerical schemes, such as the Implicit
Trapezoidal Method (ITM) [8]. It is thus crucial to have reliable tools
able to evaluate the accuracy of the numerical schemes employed for
the TDI of dynamic power system models with inclusion of delays. This
paper proposes a novel framework to address precisely this issue.

1.2. Literature review

The conventional dynamic power system model is formulated as a
set of non-linear Differential Algebraic Equations (DAEs) [9,10]. These
equations are known to be stiff and their TDI is typically conducted
through an implicit numerical scheme, in order to guarantee that
numerical stability is maintained for every integration time step size.
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Including time delays to the power system model changes the nature of
its equations, leading to a set of non-linear Delay Differential Algebraic
Equations (DDAEs) [2], for which many of the known results about the
stability properties of TDI methods for DAEs lose their validity.

The simplest approach to numerically integrate a set of DDAEs is
by modifying standard implicit methods so that they account also for
the delayed terms. In this regard, the modifications required by the
ITM to integrate power system models with time delays were discussed
in [2,11]. On the other hand, theoretical results from numerical analy-
sis indicate that such approach may not be adequate and suggest that
accurate integration of Delay Differential Equations (DDEs) requires the
application of special methods developed to this aim, e.g. see [8,12]. In
this regard, we note that most insights on the stability characterization
of a TDI method for time-delay systems are derived based on the
behavior of the method when applied to a scalar, linear test DDE. The
major limitation of such approach is that results provide only rough
and qualitative information, since they are typically not generalizable
for systems of DDEs. As a matter of fact, it has been proven that no
A-stable natural Runge–Kutta (RK) method is asymptotically stable on
the whole class of asymptotically stable linear systems of DDEs [8,13].

The stability and precision of implicit numerical methods employed
for the TDI of DDAE power system models is a problem that has not
been systematically discussed in the literature. Regarding the precision,
the standard tool used by most solvers is truncation error analysis,
which, although it provides good estimates of the deviation between
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exact and numerically computed trajectories, it yet cannot capture the
ability of a method to prevent the exponential growth of truncation
errors. The goal of this paper is to provide a novel approach to assess,
in a unified way, the stability and accuracy of numerical methods
employed for the TDI of DDAE power system models.

1.3. Contributions

The contributions of the paper are twofold:

• A novel framework, based on Small-Signal Stability Analysis
(SSSA), is proposed to evaluate the numerical approximation
introduced by TDI methods, when applied for the integration of
power systems modeled as DDAEs.

• A discussion on how the presence of delays impacts the spuri-
ous oscillations and/or overdamping introduced to the dynamic
modes of power systems by the Backward Euler Method (BEM),
the ITM, and the 2-stage Radau IIA method. To the best of our
knowledge, this is the first study that aims to systematically study
and observe this numerical effect.

.4. Organization

The remainder of the paper is organized as follows. Section 2
utlines the modeling and stability analysis of power systems impacted
y time delays. Section 3 describes the proposed approach to evaluate
he accuracy and stability of TDI methods. Section 4 presents a case
tudy based on the IEEE 14-bus benchmark system that showcases
mportant features of the proposed approach. Finally, conclusions are
rawn and future work is outlined in Section 5.

. Power system model with time delays

.1. DDAE model

The dynamic power system model is conventionally described by a
et of DAEs, as follows [9]:

𝒙′ = 𝒇 (𝒙, 𝒚) ,

𝑚,1 = 𝒈(𝒙, 𝒚) ,
(1)

here 𝒙 = 𝒙(𝑡) ∈ R𝑛 and 𝒚 = 𝒚(𝑡) ∈ R𝑚 denote the state and algebraic
ariables, respectively; 𝒇 ∶ R𝑛+𝑚 → R𝑛, 𝒈 ∶ R𝑛+𝑚 → R𝑚, are non-linear
unctions; and 𝟎𝑚,1 denotes the 𝑚 × 1 zero matrix. Discrete variables in
1) are represented implicitly, i.e., a discontinuous change in the system
ives rise to a jump from (1) to a new set of equations of the same form.

Inclusion of delays in the right-hand side of (1) changes the DAEs
nto a set of DDAEs of retarded type, as follows [2]:

𝒙′ = 𝒇 (𝒙, 𝒚,𝒙𝑑 , 𝒚𝑑 ) ,

𝑚,1 = 𝒈(𝒙, 𝒚,𝒙𝑑 , 𝒚𝑑 ) ,
(2)

here 𝒙𝑑 ∈ R𝑛𝑑 , 𝒚𝑑 ∈ R𝑚𝑑 , are the delayed or retarded state and
lgebraic variables, respectively. In compact form, (2) can be rewritten
s follows:

𝐱′ = 𝝓(𝐱, 𝐱𝑑 ) , (3)

here 𝐱 = [𝒙T 𝒚T]T, 𝐱𝑑 = [𝒙𝑑T 𝒚𝑑T]T, and:

=
[

𝑰𝑛 𝟎𝑛,𝑚
𝟎𝑚,𝑛 𝟎𝑚,𝑚

]

, 𝝓(𝐱, 𝐱𝑑 ) =
[

𝒇 (𝒙, 𝒚,𝒙𝑑 , 𝒚𝑑 )
𝒈(𝒙, 𝒚,𝒙𝑑 , 𝒚𝑑 )

]

. (4)

.2. Small-signal stability analysis

The proposed approach to assess the accuracy and stability of
umerical methods for the TDI of power systems with delays, which
2

e

ill be described in Section 3, is based on SSSA. Thus, we first introduce
he reader to the SSSA of power systems with inclusion of delays. For
implicity, let assume that the delay system includes a single constant
elay 𝜏 > 0. Then, we have that 𝐱𝑑 = 𝐱(𝑡 − 𝜏) and (3) becomes:

𝐱′(𝑡) = 𝝓(𝐱(𝑡), 𝐱(𝑡 − 𝜏)) . (5)

inearization of (5) around an equilibrium point gives:

�̃�′(𝑡) = 𝐀0�̃�(𝑡) + 𝐀1�̃�(𝑡 − 𝜏) , (6)

here 𝐀0 and 𝐀1 are the Jacobian matrices associated to the delay-free
nd delayed variables of the system, respectively; and �̃� indicates the
eviation of 𝐱 from the equilibrium. If the system includes multiple, say
, delays, 𝜏𝑘 > 0, 𝑘 = 1, 2,… , 𝜈, the last expression is generalized as:

�̃�′(𝑡) = 𝐀0�̃�(𝑡) +
𝜈
∑

𝑘=1
𝐀𝑘�̃�(𝑡 − 𝜏𝑘) . (7)

he eigenvalues of system (7) are determined from the solution of the
orresponding characteristic equation [14]:

det

(

𝑠𝐄 − 𝐀0 −
𝜈
∑

𝑘=1
𝐀𝑘𝑒

−𝑠𝜏𝑘

)

= 0 , (8)

here 𝑠 ∈ C. Then, (7) is stable if and only if all finite eigenvalues have
egative real parts.

The presence in (8) of the exponential function implies the existence
f infinitely many roots [14]. In this paper, this problem is solved
ith the technique proposed in [15]. That is, (7) is transformed to an
quivalent system of Partial Differential Equations (PDEs) of infinite
ize. Then, the PDE system is reduced to a finite dimensional problem
hrough Chebyshev’s spectral discretization. Chebyshev’s discretization
echnique has been used for the eigenvalue analysis of delayed power
ystem models, e.g. in systems with constant and stochastic delays
ffecting the stability of control loops [2,6,16] and has proved to
how very good accuracy if a proper number of interpolation nodes
s selected. A sparse version of the same technique has been recently
roposed in [17].

. Proposed approach

A TDI method for power systems with time delays is a discrete-time
pproximation employed to solve system (3) for a defined time period
nd set of initial conditions. In this section, we describe the proposed
pproach to evaluate the amount of approximation introduced by
mplicit TDI methods to the representation of the dynamic modes of
ystem (3).

.1. Single delay

Assume for simplicity that the integration time step ℎ is constant,
nd that the system includes a single constant delay, which is an integer
ultiple of the integration time step, i.e. 𝜏 = 𝑐ℎ, where 𝑐 ∈ N. We
rovide the following definition:

efinition 1. In an implicit form, a TDI method applied to system (3)
an be described by a discrete-time system, as follows:

𝑟,1 = 𝜼(𝐱𝑡, 𝐱𝑡−ℎ, 𝐱𝑡−𝑐ℎ, 𝐱𝑡−(𝑐+1)ℎ) , (9)

here 𝑟 = 𝑛 + 𝑚; 𝜼 ∶ R4𝑟 → R𝑟 is a vector of non-linear functions; and
𝑡 ∶ N∗ℎ → R𝑟.

The discrete-time system (9) covers the family of RK methods,
.e. the most important family of methods for the integration of DDEs.
n general, RK methods have been shown to be preferable to lin-

ar multi-step methods for the integration of DDEs, since they are
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characterized by simplicity of implementation, low computational com-
plexity and high accuracy, e.g. see [8] and relevant references therein.
Linearization of (9) gives:

𝟎𝑟,1 =
𝜕𝜼
𝜕𝐱𝑡

�̃�𝑡 +
𝜕𝜼

𝜕𝐱𝑡−ℎ
�̃�𝑡−ℎ +

𝜕𝜼
𝜕𝐱𝑡−𝑐ℎ

�̃�𝑡−𝑐ℎ +
𝜕𝜼

𝜕𝐱𝑡−(𝑐+1)ℎ
�̃�𝑡−(𝑐+1)ℎ . (10)

The linearized method can be rewritten as follows:

𝟎𝑟,1 = 𝐂0�̃�𝑡 + 𝐂1�̃�𝑡−ℎ + 𝐂𝑐 �̃�𝑡−𝑐ℎ + 𝐂𝑐+1�̃�𝑡−(𝑐+1)ℎ , (11)

where 𝐂𝑖 are, in general, matrix functions of ℎ, 𝐄, 𝐀0, 𝐀1.
We arrive at the following proposition.

roposition 1. The stability of (11) can be assessed by studying the
stability of the following linear discrete-time system:

𝐅 𝐲𝑡 = 𝐆𝐲𝑡−ℎ , (12)

where:

𝐅 =
[

𝐈𝑐𝑟 𝟎𝑐𝑟,𝑟
𝟎𝑟,𝑐𝑟 𝐂0

]

, 𝐆 =
[

𝟎𝑐𝑟,𝑟 𝐈𝑐𝑟
−𝐂𝑐+1 −𝐂†

]

, (13)

𝐂† =
[

𝐂𝑐 𝟎𝑟,𝑟 … 𝟎𝑟,𝑟 𝐂1
]

, (14)

ith 𝐂† having dimensions 𝑟 × 𝑐𝑟.

The proof of Proposition 1 is provided in Appendix. Then, the
tability of (12) can be studied by finding its eigenvalues, which are
he roots of the characteristic equation:

det(�̂�𝐅 −𝐆) = 0 , (15)

here �̂� ∈ C. In particular, (12) is asymptotically stable if and only if
ll finite eigenvalues have magnitude less than one.

.2. Multiple delays

Let the system include multiple, say 𝜈, delays. If 𝜏1 < 𝜏2 < ⋯ < 𝜏𝜈 ,
hen (11) takes the more general form:

𝑟,1 =𝐂0�̃�𝑡 + 𝐂1�̃�𝑡−ℎ + 𝐂𝑐1 �̃�𝑡−𝑐1ℎ + 𝐂𝑐1+1�̃�𝑡−(𝑐1+1)ℎ
+⋯ + 𝐂𝑐𝜈 �̃�𝑡−𝑐𝜈ℎ + 𝐂𝑐𝜈+1�̃�𝑡−(𝑐𝜈+1)ℎ , (16)

here we have substituted 𝜏𝑘 = 𝑐𝑘ℎ, 𝑐1 < 𝑐2 < ⋯ < 𝑐𝜈 ; 𝐂𝑖 are, in
eneral, matrix functions of ℎ, 𝐄, 𝐀0, 𝐀𝑘. Then, Proposition 1 can be

generalized as follows.

Proposition 2. The stability of (16) can be assessed by studying the
stability of a linear discrete-time system in the form of (12), where:

𝐅 =
[

𝐈𝑐𝜈 𝑟 𝟎𝑐𝜈 𝑟,𝑟
𝟎𝑟,𝑐𝜈 𝑟 𝐂0

]

, 𝐆 =
[

𝟎𝑐𝜈 𝑟,𝑟 𝐈𝑐𝜈 𝑟
−𝐂𝑐𝜈+1 −𝐂†

]

, (17)

𝐂† =
[

𝐂𝑐𝜈 𝟎𝑟,𝑟 … 𝐂𝑐1 … 𝟎𝑟,𝑟 𝐂1
]

, (18)

with 𝐂† having dimensions 𝑟 × 𝑐𝜈𝑟.

The proof of Proposition 2 is provided in Appendix.

3.3. Eigenvalue mapping and validity of SSSA

In both single-delay and multiple-delay cases, the eigenvalues of
system (12) represent, in the 𝑍-plane, the numerically distorted by the
TDI method dynamic modes of system (3). Let �̂�𝑘 be the eigenvalue of
(12) that approximates the 𝑘th mode of the DDAE power system model.
The latter is represented by the eigenvalue 𝑠𝑘 = 𝛼 + 𝚥𝛽, which is a root
of the characteristic Eq. (7). Then, the actual and distorted modes 𝑠𝑘,
̂𝑘, can become directly comparable by mapping the one to the domain
of the other. Mapping �̂�𝑘 from the 𝑍 to the 𝑆 plane, we have:

̂ = 1 log(�̂� ) = �̂� + 𝚥𝛽 , (19)
3

𝑘 ℎ 𝑘
here log(⋅) denotes the complex logarithm. Then, the numerical dis-
ortion caused to the 𝑘th mode by the TDI method is:

𝑠,𝑘 = �̂�𝑘 − 𝑠𝑘 , (20)

hile the distortion caused to the damping of this mode is:

𝜁,𝑘 = 𝜁𝑘 − 𝜁𝑘 , (21)

here 𝜁𝑘 = −𝛼∕(𝛼2 + 𝛽2). Positive values of 𝑑𝜁,𝑘 in (21) indicate that the
ode is overdamped, whereas negative values indicate that the mode

s underdamped.
Eqs. (20) and (21) are based on SSSA and thus they are in principle

alid only at a steady state solution of the system. Around the steady
tate solution, these equations are accurate measures of the distor-
ion of the system’s modes given ℎ, or vice versa, can be employed
o determine the value of ℎ required to achieve a required level of
recision. These measures are also good estimates of the approximation
ntroduced by TDI methods under varying operating conditions, owing
irst, to that the structure of the dynamic modes and the stiffness of

power system model are features that do not alter dramatically by
hanging the operating point, and second, that TDI methods maintain
ertain qualitative properties, e.g. numerical stability properties, when
pplied to different systems of the same class. This suggests that, for
given network, the proposed analysis does not need to be repeated

ften and, possibly, can be done only once. Similar considerations that
upport the statement above are given, e.g., in [18–20].

.4. Examples

In this section we consider three examples of implicit RK methods
pplied for the TDI of (3), namely the BEM, the ITM, and the 2-stage
adau IIA. The same methods are then utilized in the simulations of
ection 4. The goal here is to show how the linearized version of each
ethod can be formulated so that Proposition 2 can be readily applied.

or generality, we assume that the system includes 𝜈 delays. The single
elay case can be retrieved by substituting 𝜈 = 1.

ackward Euler method
The Butcher tableau [21] of the BEM is:

1 1
1

(22)

Applied for the TDI of (3), the method takes the form:

𝐄𝐱𝑡 = 𝐄𝐱𝑡−ℎ + ℎ𝝓(𝐱𝑡, 𝐱𝑡−𝑐1ℎ, 𝐱𝑡−𝑐2ℎ,… , 𝐱𝑡−𝑐𝜈ℎ) . (23)

Linearization of (23) gives:

𝐄�̃�𝑡 = 𝐄�̃�𝑡−ℎ + ℎ𝐀0�̃�𝑡 + ℎ
𝜈
∑

𝑘=1
𝐀𝑘�̃�𝑡−𝑐𝑘ℎ , (24)

or equivalently:

𝟎𝑟,1 =(𝐄 − ℎ𝐀0)�̃�𝑡 − 𝐄�̃�𝑡−ℎ − ℎ
𝜈
∑

𝑘=1
𝐀𝑘�̃�𝑡−𝑐𝑘ℎ . (25)

The last system is in the form of (11), where:

𝐂0 = 𝐄 − ℎ𝐀0 , 𝐂1 = −𝐄 , 𝐂𝑐𝑘 = −ℎ𝐀𝑘 , 𝐂𝑐𝑘+1 = 𝟎𝑟,𝑟 . (26)

Note that including the delayed Jacobians 𝐀𝑘 in (24) is necessary to
capture the delay effects on the system. This should not be confused
with the structure of the Jacobian used in the iterative solution of each
point of the integration, e.g. in Newton’s method, where delays can be

viewed as known constants and thus omitted, see [2].
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Implicit trapezoidal method
The Butcher tableau of the ITM is:

0 0 0
1 0.5 0.5

0.5 0.5
(27)

Applying the method for the TDI of (3) and linearizing, gives:

𝐄�̃�𝑡 = 𝐄�̃�𝑡−ℎ + 0.5ℎ𝐀0
(

�̃�𝑡−ℎ + �̃�𝑡
)

+ 0.5ℎ
𝜈
∑

𝑘=1
𝐀𝑘(�̃�𝑡−(𝑐𝑘+1)ℎ + �̃�𝑡−𝑐𝑘ℎ) .

(28)

System (28) can be written in the form of (11), where:

𝐂0 = 𝐄 − 0.5ℎ𝐀0 , 𝐂1 = −𝐄 − 0.5ℎ𝐀0 , 𝐂𝑐𝑘 = 𝐂𝑐𝑘+1 = −0.5ℎ𝐀𝑘 . (29)

-stage Radau IIA
The Butcher tableau of the 2-stage Radau IIA method is:

1∕3 5∕12 −1∕12
1 3∕4 1∕4

3∕4 1∕4
(30)

Applying the method for the TDI of (3) and linearizing, gives:

𝐄𝐮𝑡−ℎ+ℎ∕3 =𝐄�̃�𝑡−ℎ +
ℎ
12

𝐀0
(

5𝐮𝑡−ℎ+ℎ∕3 − �̃�𝑡
)

(31)

+ ℎ
12

𝜈
∑

𝑘=1
𝐀𝑘(5�̃�𝑡−(𝑐𝑘+1)ℎ − �̃�𝑡−𝑐𝑘ℎ) ,

𝐄�̃�𝑡 =𝐄�̃�𝑡−ℎ +
ℎ
4
𝐀0

(

3𝐮𝑡−ℎ+ℎ∕3 + �̃�𝑡
)

(32)

+ ℎ
4

𝜈
∑

𝑘=1
𝐀𝑘(3�̃�𝑡−(𝑐𝑘+1)ℎ + �̃�𝑡−𝑐𝑘ℎ) . (33)

Solving (31) for 𝐮𝑡−ℎ+ℎ∕3 and substituting in (32) yields:

(𝐄 − ℎ
4
𝐀0)�̃�𝑡 =

(

𝐄 + 3ℎ
4
𝐀0𝐌𝐄

)

�̃�𝑡−ℎ −
ℎ2

16
𝐀0𝐌𝐀0�̃�𝑡

+ ℎ
4

𝜈
∑

𝑘=1

(

𝐀𝑘 −
ℎ
4
𝐀𝑘𝐌𝐀𝑘

)

�̃�𝑡−𝑐𝑘ℎ

+ 3ℎ
4

𝜈
∑

𝑘=1
𝐀𝑘𝐌𝐄�̃�𝑡−(𝑐𝑘+1)ℎ , (34)

where 𝐌 = (𝐄 − 5ℎ
12𝐀0)−1. System (34) can be rewritten in the form of

11), where:

𝐂0 = 𝐄 − ℎ
4
𝐀0 +

ℎ2

16
𝐀0𝐌𝐀0 ,

𝐂1 = −𝐄 − 3ℎ
4
𝐀0𝐌𝐄 ,

𝐂𝑐𝑘 = −ℎ
4
𝐀𝑘 +

ℎ2

16
𝐀𝑘𝐌𝐀𝑘 ,

𝑐𝑘+1 = −3ℎ
4
𝐀𝑘𝐌𝐄 .

(35)
4

r

. Case study

This section presents simulation results based on the IEEE 14-bus
ystem. The system consists of 14 buses, 5 synchronous machines
quipped with Automatic Voltage Regulators (AVRs), 12 transmission
ines, 4 transformers, and 12 loads. Moreover, the machine connected
o bus 1 is equipped with a Power System Stabilizer (PSS). The DAE
ystem model has in total 52 state and 92 algebraic variables. The full
tatic and dynamic data are taken from [10] and the gain of the AVR of
he machine at bus 1 is reduced by 2.5 times compared to these data,
modification that secures for the system an adequate delay margin

o facilitate a full comparison among the examined TDI methods for
oth small and large delay and time step sizes. Simulations in this
ection are executed using Dome [22] and eigenvalues are computed
ith LAPACK [23].

Let us consider first the system without any delay. The eigenvalue
nalysis shows that the system is stable and that the most poorly
amped mode is the complex pair −0.976 ± 𝚥5.970. Hereafter we will
efer to this mode as Mode 1. Fig. 1 shows, for different integration time
tep sizes, how the dynamic modes of the DAE power system model
re approximated by the three TDI methods discussed in Section 3.4.
he plots are drawn by first solving for each method Eq. (8) and then
apping the computed roots to the 𝑆-plane according to (19), so that

hey are directly comparable to the eigenvalues of the DAE system,
.e. the roots of (8), where, for the delay-free case, one has 𝐀𝑘 = 𝟎𝑟,𝑟.

Results indicate that the BEM overdamps the system’s dynamics
see Fig. 1(a)), which is as expected, since the method is known to
e hyperstable, see also the relevant discussion in [20]. Moreover,
he ITM, while being very accurate for time steps in the order of
0−2 s, it introduces underdamped oscillations when employed with
arge time steps (see Fig. 1(b)). Finally, under the same time step, the
ost accurate among the examined methods is the 2-stage Radau IIA
ethod.

We now introduce a delay. With this aim, we assume that the input
ignal of the PSS connected to the machine at bus 1 is impacted by

constant delay 𝜏. By varying the delay magnitude and repeating
he eigenvalue analysis we find that the delay margin of the system
s 0.39 s. In fact, for 𝜏 = 0.4 s, the system has one unstable mode
.007 ± 𝚥7.498, which is thus the most critical for the delay-dependent
tability of the system. Hereafter we will refer to this mode as Mode 2.

Note that, in the delay-free system, Mode 2 is represented by the
omplex pair −2.719 ± 𝚥8.898. The eigenvalues of the DDAE system
re determined considering Chebyshev’s discretization technique (see
lso Section 2.2) with 8 nodes, which is a choice that provides a good
ompromise between precision and computational burden.

Fig. 2 shows two examples of how the dynamic modes of the DDAE
ystem are distorted by the TDI methods. Fig. 2(a) considers ℎ = 0.01 s
nd 𝜏 = 0.05 s. In this case, both ITM and Radau IIA accurately capture
he system’s dynamics. Fig. 2(b) considers larger time step and delay
alues, i.e. ℎ = 0.1 s and 𝜏 = 0.3 s, in which case the Radau IIA
s the most accurate among the examined methods. For the ITM, the

ightmost mode, i.e. Mode 2, shows a slight overdamping of 𝑑𝜁 =
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Table 1
Numerical distortion of Mode 1, ℎ = 0.1 s.
𝜏 [s] Actual mode BEM ITM Radau IIA

|𝑑𝑠| [%] 𝑑𝜁 [%] |𝑑𝑠| [%] 𝑑𝜁 [%] |𝑑𝑠| [%] 𝑑𝜁 [%]

– −0.976 ± 𝚥5.970 1.594 24.681 0.175 −0.892 0.018 0.231
0.1 −1.308 ± 𝚥5.883 1.784 26.479 0.174 −1.318 0.085 1.382
0.2 −1.685 ± 𝚥5.801 1.760 24.472 0.179 −1.800 0.093 1.472
0.3 −2.117 ± 𝚥5.687 1.736 21.853 0.188 −2.311 0.103 1.580
0.4 −2.601 ± 𝚥5.497 1.694 18.372 0.197 −2.752 0.116 1.712
Table 2
Numerical distortion of Mode 2, ℎ = 0.1 s.
𝜏 [s] Actual mode BEM ITM Radau IIA

|𝑑𝑠| [%] 𝑑𝜁 [%] |𝑑𝑠| [%] 𝑑𝜁 [%] |𝑑𝑠| [%] 𝑑𝜁 [%]

– −2.719 ± 𝚥8.898 3.259 29.223 0.605 −3.349 0.091 0.433
0.1 −1.441 ± 𝚥9.276 2.606 25.388 0.587 −1.090 0.251 −1.373
0.2 −0.545 ± 𝚥8.681 2.314 25.396 0.427 0.090 0.186 −0.196
0.3 −0.145 ± 𝚥8.031 2.013 24.195 0.318 0.298 0.137 0.270
0.4 0.007 ± 𝚥7.498 1.788 22.953 0.250 0.195 0.107 0.491
Fig. 2. DDAE system: Eigenvalue analysis of TDI methods.

0.298 % in Fig. 2(b). The magnitude of the overdamping per se in this
case is small, yet, interestingly, the response of the method is in the
opposite direction from what one would expect, that would be, similar
to the delay-free case, all modes to be more or less underdamped.

In both cases illustrated in Fig. 2, the BEM overdamps the system’s
oscillations. This property of the BEM is well known. On the other hand,
what is of interest in this work and not well known is how the numerical
approximation is impacted due to the presence of the delay. To this
aim, we carry out a number of simulations considering a varying delay
magnitude and a constant time step, and we compute for each scenario
and method the numerical and damping distortion according to (20)
and (21). Results are presented for Mode 1 and Mode 2.

Figs. 3 and 4 show how the three TDI methods considered distort
Mode 1 and Mode 2, respectively, for ℎ = 0.03 s and as the delay
5

Fig. 3. Time delay vs distortion of Mode 1, ℎ = 0.03 s.

magnitude varies. For the sake of comparison, we have included in each
plot a horizontal line indicating the amount of distortion introduced by
each method for the same time step size in the delay-free case. Results
show that the same method does not necessarily have the same effect on
different modes of the system. For example, the accuracy of the BEM is
better in the delayed than in the delay-free system in capturing Mode 2,
but worse in capturing Mode 1. To give another example, the accuracy
of the Radau IIA is better in the delayed than in the delay-free system
in capturing Mode 1 for all delays considered, however, for Mode 2
the method is more accurate in the delayed system only for delays
larger than 0.15 s. A general conclusion arising from these figures is

that, although both ITM and Radau IIA are very accurate for all delays
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Fig. 4. Time delay vs distortion of Mode 2, ℎ = 0.03 s.

onsidered, the ITM follows slightly more closely both modes, both in
erms of numerical and damping distortion.

We consider a larger time step, i.e. ℎ = 0.1 s. The distortion of
ode 1 and Mode 2 by the examined TDI methods in this case is

resented in Tables 1 and 2. In this case, the Radau IIA method is
he most accurate among the three methods for all delays considered.
urthermore, for large delays, the overdamping introduced by the BEM
ecreases, which is also consistent with Figs. 3(b) and 4(b). Finally,
s the delay increases, the underdamping introduced by the ITM to
ode 1 increases, whereas for Mode 2, it decreases, so that for delays

arger than 0.2 s the mode appears overdamped. This is in line with the
iscussion of Fig. 2 provided above.

We consider that the delay is fixed at 0.2 s, and we examine how
he distortion of the two modes varies as the time step ℎ is increased.
he results are presented in Fig. 5, and show that, as expected, the
agnitude of 𝑑𝑠 for the two modes for all three methods increases with

he increase of ℎ. The different response of the ITM in capturing the
amping of the two modes is confirmed also in this figure. Furthermore,
ig. 5(f) indicates that the Radau IIA may induce underdamping or
verdamping depending on the step size (see Mode 1). A relevant
emark is that, assuming only constant delays that are integer multiples
f ℎ limits our ability to draw plots like Fig. 5 with full accuracy. The
ssumption is made in this work for the sake of simplicity, e.g. we have
o need for explicit calls on interpolation in the definition of matrices
and 𝐆. The task of extending the formulation for delays of any value,

ncluding time-varying and stochastic delays, is left as a task for future
ork.

. Conclusions

The paper presents a framework to evaluate the numerical approx-
mation that TDI methods introduce when employed for the numerical
6

Fig. 5. Time step vs distortion of Mode 1 (dashed) and Mode 2 (solid), 𝜏 = 0.2 s.

ntegration of power system models impacted by time delays. The
roposed framework is based on SSSA and is formulated in a general
ay that covers many methods, including the most important family
f numerical methods for the integration of DDEs, i.e. implicit RK
ethods. We will dedicate future work to evaluate the computational

urden of our approach when applied to large-scale systems, as well as
o extend it for time-varying and stochastic delays, plus for delays that
re not integer multiples of the time step.
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ppendix

.1. Proof of Proposition 1

We set:
[0]
𝑡−ℎ = �̃�𝑡−(𝑐+1)ℎ , 𝒚[1]𝑡−ℎ = �̃�𝑡−𝑐ℎ ,

… , 𝒚[𝑐−1]𝑡−ℎ = �̃�𝑡−2ℎ , 𝒚[𝑐]𝑡−ℎ = �̃�𝑡−ℎ ,
(36)

and
𝒚[0]𝑡 = �̃�𝑡−𝑐ℎ = 𝒚[1]𝑡−ℎ , 𝒚[1]𝑡 = �̃�𝑡−(𝑐−1)ℎ = 𝒚[2]𝑡−ℎ ,

… , 𝒚[𝑐−1]𝑡 = �̃�𝑡−ℎ = 𝒚[𝑐]𝑡−ℎ , 𝒚[𝑐]𝑡 = �̃�𝑡 .
(37)

From the last equation we have:

𝐂0𝒚
[𝑐]
𝑡 = 𝐂0�̃�𝑡 = −𝐂1�̃�𝑡−ℎ − 𝐂𝑐 �̃�𝑡−𝑐ℎ − 𝐂𝑐+1�̃�𝑡−(𝑐+1)ℎ ,

or equivalently:
[𝑐] [𝑐] [1] [0] (38)
𝐂0𝒚𝑡 = −𝐂1𝒚𝑡−ℎ − 𝐂𝑐𝒚𝑡−ℎ − 𝐂𝑐+1𝒚𝑡−ℎ .
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𝒚

We define:

𝐲𝑡 =
[

(𝒚[0]𝑡 )T (𝒚[1]𝑡 )T (𝒚[2]𝑡 )T … (𝒚[𝑐]𝑡 )T
]

T. (39)

Merging (36)–(39), we arrive at the desired result. □

A.2. Proof of Proposition 2

We set:
𝒚[0]𝑡−ℎ = �̃�𝑡−(𝑐𝜈+1)ℎ , 𝒚[1]𝑡−ℎ = �̃�𝑡−𝑐𝜈ℎ ,

… , 𝒚[𝑐𝜈−𝑐1]𝑡−ℎ = �̃�𝑡−(𝑐1+1)ℎ , 𝒚[𝑐𝜈−𝑐1+1]𝑡−ℎ = �̃�𝑡−𝑐1ℎ ,

… , 𝒚[𝑐𝜈−1]𝑡−ℎ = �̃�𝑡−2ℎ , 𝒚[𝑐𝜈 ]𝑡−ℎ = �̃�𝑡−ℎ ,

(40)

and
𝒚[0]𝑡 = �̃�𝑡−𝑐𝜈ℎ = 𝒚[1]𝑡−ℎ , 𝒚[1]𝑡 = �̃�𝑡−(𝑐𝜈−1) = 𝒚[2]𝑡−ℎ ,

… , 𝒚[𝑐𝜈−𝑐1]𝑡 = �̃�𝑡−𝑐1ℎ = 𝒚[𝑐𝜈−𝑐1+1]𝑡−ℎ ,

𝒚[𝑐𝜈−𝑐1+1]𝑡 = �̃�𝑡−(𝑐1−1)ℎ = 𝒚[𝑐𝜈−𝑐1+2]𝑡−ℎ , … ,
[𝑐𝜈−1]
𝑡 = �̃�𝑡−ℎ = 𝒚[𝑐𝜈 ]𝑡−ℎ , 𝒚[𝑐𝜈 ]𝑡 = �̃�𝑡 .

(41)

From the last equation we have that:

𝐂0𝒚
[𝑐𝜈 ]
𝑡 = 𝐂0�̃�𝑡 = − 𝐂1�̃�𝑡−ℎ − 𝐂𝑐1 �̃�𝑡−𝑐1ℎ

− 𝐂𝑐1+1�̃�𝑡−(𝑐1+1)ℎ −⋯

− 𝐂𝑐𝜈 �̃�𝑡−𝑐𝜈ℎ − 𝐂𝑐𝜈+1�̃�𝑡−(𝑐𝜈+1)ℎ ,

or, equivalently:

𝐂0𝒚
[𝑐𝜈 ]
𝑡 = − 𝐂1𝒚

[𝑐𝜈 ]
𝑡−ℎ − 𝐂𝑐1𝒚

[𝑐𝜈−𝑐1+1]
𝑡−ℎ − 𝐂𝑐1+1𝒚

[𝑐𝜈−𝑐1]
𝑡−ℎ

−⋯ − 𝐂𝑐𝜈 𝒚
[1]
𝑡−ℎ − 𝐂𝑐𝜈+1𝒚

[0]
𝑡−ℎ .

(42)

We define:

𝐲𝑡 =
[

(𝒚[0]𝑡 )T (𝒚[1]𝑡 )T … (𝒚[𝑐𝜈−𝑐1]𝑡 )T … (𝒚[𝑐𝜈 ]𝑡 )T
]

T. (43)

From (40)–(43), we arrive at the desired result. □
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