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A B S T R A C T

This paper proposes the use of participation factors of complex frequency variables to study the propagation
of oscillations in power systems. The method combines the recently proposed concept of complex frequency
with modal participation analysis to derive a novel metric that locates the sources of oscillations in the system
and tracks their spatial propagation. The proposed approach allows isolating the variables more sensitive to
oscillations, bus voltage or frequency, thus facilitating the selection of corrective actions. The validity of the
theoretical results and the scalability of the method are supported with extensive simulations performed for
test networks of various sizes and with both conventional and inverter-based generation.
1. Introduction

1.1. Motivation

The wide geographic dispersion and strong coupling of frequency/
voltage dynamics of Inverter-Based Resources (IBRs) makes challenging
the tracking of the propagation of oscillations, the isolation of the
components responsible for their initiation, and hence, the design of
efficient solutions for their mitigation. This paper proposes a computa-
tional tool for the study of frequency oscillation propagation in systems
with high proliferation of IBRs. The proposed technique builds on the
concept of complex frequency, first proposed in [1], and combines it with
modal participation analysis.

1.2. Literature review

A central problem for the security of low-inertia systems is un-
derstanding converter-driven frequency oscillations and the degree
of their propagation in the network. In this regard, a well-known
approach to study the propagation of frequency oscillations in a syn-
chronous machine dominated system is modeling lines and generators
as a distributed continuum and representing oscillations with trav-
eling waves [2–4]. The major shortcomings of this approach are its
highly topology-dependent accuracy (i.e. the accuracy varies signif-
icantly between radial and meshed networks), as well as its need
for significant model simplifications. An alternative continuum model
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that overcomes these limitations was recently introduced based on the
frequency divider, which provides estimations of frequency variations
across a transmission network [5,6]. Other methods focus on oscil-
lation source localization [7–9]. These methods have been partially
driven by the development and widespread use of synchronized phasor
measurement units.

The starting point of the present work is an application of the
concept of Complex Frequency (CF), which has been recently proposed
by the last author of this paper in [1]. The CF generalizes the frequency
divider and links, using minimal approximations, the factors affecting
frequency transients, complex bus power injections and their rate of
change. The application of the CF has been extended to variables and
signals other than voltages, including e.g. current injections and control
references of power converters [10]. The CF has been also used as a
tool to evaluate the transient performance of IBRs [11], to estimate the
inertia provided by virtual power plants [12], to draw an equivalency
between complex droop and virtual oscillator controls [13], and to
design a virtual impedance control for IBRs [14]. Finally, it has been
recently leveraged for the modeling of hybrid ac/dc systems [15].

1.3. Contributions

This paper employs the CF concept to investigate the propagation of
frequency oscillations in power networks using the generalized model
analysis proposed in [16].
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The specific contributions of the paper are the following:

• CFPFs are proposed as a novel computational tool for modal
propagation analysis of power networks.

• The proposed tool is employed to study the propagation of oscil-
lations in systems with high penetration of IBRs.

The proposed method expands on the traditional Participation Factor
(PF) analysis, which can reveal potential oscillation sources but is
unable to track their propagation across the network. Additionally,
the analysis provides information regarding the oscillation type, i.e. if
oscillations affect the voltage magnitude, frequency or both. The pro-
vided information facilitates the selection of targeted corrective actions,
for example the need for tuning problematic devices or the optimal
placement of network efficiency enhancing assets, e.g. STATCOMs. The
theoretical results of this work are supported by comprehensive anal-
ysis of systems of different sizes and for various operating conditions
and scenarios.

1.4. Paper organization

The remainder of the paper is organized as follows. Section 2
recalls the definition of CF and its application to the bus voltages of
a power system. Section 3 presents the proposed approach to study the
propagation of oscillations in a power network through participation
analysis of complex frequency variables. Section 4 presents two case
studies based on the two-area system and the Irish transmission system,
respectively. Finally, conclusions are drawn in Section 5.

2. Complex frequency preliminaries

In this section, we recall the mathematical definition of the CF
concept, first proposed in [1], and describe its application to the bus
voltages of a dynamic power system model. The CFs of bus voltages
will be used in following sections for the calculation of CFPFs and for
modal propagation analysis.

2.1. Complex frequency definition

Any complex quantity, say �̄�, can be written in polar coordinates as:

�̄� = 𝑣 𝑒𝚥 𝜃 , (1)

here 𝚥 is the imaginary unit. If we define 𝑢 = ln(𝑣), 𝑣 > 0, then (1)
ecomes:

�̄� = 𝑒𝑢+𝚥 𝜃 . (2)

f �̄� is a function of time, then the derivative of (2) leads to:

̇̄𝑣 = (�̇� + 𝚥 �̇�) 𝑒𝑢+𝚥 𝜃 = (�̇� + 𝚥 �̇�) �̄� . (3)

In [1], expression (3) is applied to the bus voltages of an ac power
rid written as Park vectors, namely, as time-dependent complex quan-
ities that utilize the 𝑑𝑞-axis components of the Park reference frame
otating at constant angular speed 𝜔𝑜, i.e.:

�̄�p = 𝑣𝑑 + 𝚥 𝑣𝑞 . (4)

ifferentiating (1) and (4) and taking into account the rotation of the
ark reference frame, one has:

= �̇� =
𝑣𝑑 �̇�𝑞 − 𝑣𝑞 �̇�𝑑

𝑣2
+ 𝜔𝑜 , (5)

𝜌 = �̇� = �̇�
𝑣
=

𝑣𝑑 �̇�𝑑 + 𝑣𝑞 �̇�𝑞
𝑣2

, (6)

where 𝜔 is the conventional instantaneous frequency of a time-varying
voltage and 𝜌 can be defined as an instantaneous bandwidth [17].
2

Alternatively, one can interpret 𝜔 and 𝜌 as azimuthal and radial speeds, p
respectively, that describe the rotation and translation of a trajec-
tory [18]. From (3), (5) and (6), the voltage time derivative can be
written as:

̇̄𝑣 = (𝜌 + 𝚥 𝜔) �̄� = �̄� �̄� , (7)

where �̄� is the Complex Frequency (CF) of the voltage [1].

2.2. Bus voltage complex frequencies in a power system

A power system model for short-term dynamic studies can be
formed as a set of Differential-Algebraic Equations (DAEs):

�̇� = 𝒇 (𝒙, 𝒚) ,

𝟎𝑚,1 = 𝒈(𝒙, 𝒚) ,
(8)

where 𝒙 = 𝒙(𝑡) ∶ [0,∞) → R𝑛 and 𝒚 = 𝒚(𝑡) ∶ [0,∞) → R𝑚 are column
vectors of state and algebraic variables, respectively; 𝒇 ∶ R𝑛+𝑚 → R𝑛

and 𝒈 ∶ R𝑛+𝑚 → R𝑚 are nonlinear functions; 𝟎𝑚,1 is the zero matrix of
dimensions 𝑚 × 1.

In DAEs (8) that describe the dynamic behavior of the system, bus
voltages (either magnitudes and phase angles or 𝑑𝑞-axis components)
are generally represented as algebraic variables. Hence, the calculation
of CFs of bus voltages requires the definition of the voltages as functions
of the states of the system i.e., �̄�(𝒙). However, such expressions cannot
e obtained explicitly. We deal with this problem by taking advantage
f a property of the CF, i.e. it can always be obtained as the solution
f a set of linear – possibly time-varying – equations, despite (8) being
onlinear. This property is demonstrated below.

Let us consider the current injections at the network buses, say �̄�.
hese are linked to the bus voltages through the well-known admit-
ance matrix �̄� :

̄ = �̄� �̄� . (9)

f the network has 𝜈 buses, then �̄� and �̄� are 𝜈 × 1 vectors and �̄� is a
× 𝜈 matrix. Let us also assume that the elements of the voltage and

urrent vectors are the time-dependent components of the 𝑑𝑞-axis Park
eference frame. Finally, we also assume that the elements of the ad-
ittance matrix �̄� are constant, or, equivalently, that the fast dynamics

f the transmission lines and transformers are negligible. One should
ote that this assumption is the only requirement for the calculation
f bus voltage CFs in this work and no other assumption regarding the
etwork topology is necessary. Attempts to lift this assumption have
lso been recently reported in the literature [15]. Then, from (7), the
ime derivative of (9) is:

̇ = �̄� (�̄� ◦ �̄�) = �̄� �̄� �̄� = �̄� �̄� , (10)

here ◦ indicates the Hadamard product of two vectors; �̄� = diag(�̄�);
nd �̄� = �̄� �̄� .

The elements of the current injections �̄� are, in general, functions of
tate and algebraic variables. For the sake of derivation, it is convenient
o separate the 𝑑𝑞-axis components 𝒗𝑑 and 𝒗𝑞 of the bus voltages
rom other algebraic variables. Let us indicate with �̂� the remaining
lgebraic variables so that 𝒚 = (�̂�, 𝒗𝑑 , 𝒗𝑞) ∶= [�̂�⊺, 𝒗⊺𝑑 , 𝒗

⊺
𝑞]⊺ (where ⊺ is the

ranspose). Since the network has 𝜈 buses, 𝒗𝑑 and 𝒗𝑞 are 𝜈 × 1 vectors
nd �̂� is a (𝑚 − 2𝜈) × 1 vector. Then, we can write:

̄ = �̄�(𝒙, �̂�, 𝒗𝑑 , 𝒗𝑞) , (11)

nd differentiation with respect to time gives:

̇ = �̄�𝒙 �̇� + �̄��̂� ̇̂𝒚 + �̄�𝒗𝑑 �̇�𝑑 + �̄�𝒗𝑞 �̇�𝑞 . (12)

From (8), the time derivative of the full column vector of algebraic
ariables can be written as1:

̇ = −𝒈−1𝒚 𝒈𝒙�̇� = 𝑮 �̇� , (13)

1 Note that (13) requires that 𝒈𝒚 is invertible not only at an equilibrium
oint, but at every instant 𝑡 along the flow of the solution of (8).
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where 𝑮 has dimensions 𝑚 × 𝑛. The submatrix �̂�, with dimensions
(𝑚 − 2𝜈) × 𝑛, formed with the rows of 𝑮 that correspond to the subset
of algebraic variables �̂�, gives:

̇̂ = �̂� �̇� . (14)

Then, observe that the time derivatives of 𝒗𝑑 and 𝒗𝑞 can be written
as functions of 𝒗𝑑 and 𝒗𝑞 as well as of the components 𝝆 and 𝝎 of the
complex frequency, as follows:

�̇�𝑑 = 𝑽 𝑑 𝝆 − 𝑽 𝑞 𝝎 ,

�̇�𝑞 = 𝑽 𝑞 𝝆 + 𝑽 𝑑 𝝎 ,
(15)

where 𝑽 𝑑 = diag(𝒗𝑑 ) and 𝑽 𝑞 = diag(𝒗𝑞).
Merging (10), (12), (14) and (15) and splitting real and imaginary

parts, one obtains:

𝝌 = 𝑩 �̇� , (16)

where 𝝌 = (𝝆, 𝝎), and 𝑩 has dimensions 2𝜈 × 𝑛 and can be obtained as:

= 𝑯−1𝑲 . (17)

atrix 𝑯 has dimensions 2𝜈 × 2𝜈 and its order is twice the number of
uses of the grid. 𝑯 has the following structure:

=
[

Re{�̄�} −Im{�̄�}
Im{�̄�} Re{�̄�}

]

−
[

Re{�̄�1} Re{�̄�2}
Im{�̄�1} Im{�̄�2}

]

, (18)

ith

̄ 1 = �̄�𝒗𝑑𝑽 𝑑 + �̄�𝒗𝑞𝑽 𝑞 ,
̄ 2 = �̄�𝒗𝑞𝑽 𝑑 − �̄�𝒗𝑑𝑽 𝑞 .

inally, the 2𝜈 × 𝑛 matrix 𝑲 is:

=
[

Re{�̄�𝒙} + Re{�̄��̂�}�̂�
Im{�̄�𝒙} + Im{�̄��̂�}�̂�

]

. (19)

qs. (16)–(19) describe the analytical derivation of the bus voltage
Fs as a solution to a linear, time-varying set of equations. More

nformation regarding the calculation of CFs can be found in [1].

. Complex frequency participation factors

In this section, we first recall standard small-signal stability analysis
sing modal participation factors in the classical sense. We then present
he proposed approach to study the propagation of dynamic modes
n power networks through participation factor analysis of complex
requency variables, which is the main contribution of this work.
inally, the similarities and differences with classical PF analysis are
ighlighted via an example test case.

.1. Classical small-signal stability analysis

Consider that an equilibrium (𝒙𝑜, 𝒚𝑜) of (8) is known. Then, small-
isturbance analysis permits linearization of (8) around the equilib-
ium, as follows:

̇̃𝒙 = 𝒇𝒙�̃� + 𝒇𝒚 �̃� , (20)

𝑚,1 = 𝒈𝒙�̃� + 𝒈𝒚 �̃� , (21)

here �̃� = 𝒙 − 𝒙𝑜, �̃� = 𝒚 − 𝒚𝑜; and 𝒇𝒙, 𝒇𝒚 , 𝒈𝒙, 𝒈𝒚 are Jacobian matrices
t (𝒙𝑜, 𝒚𝑜). From (21) and assuming that 𝒈𝒚 is full rank, we get that:

̃ = −𝒈−1𝒚 𝒈𝒙�̃� , (22)

nd by substituting (22) in (20), we arrive to the following set of linear
rdinary differential equations:

̇ ̃
3

̃ = 𝑨𝒙 , (23) m
here 𝑨 = 𝒇𝒙 − 𝒇𝒚𝒈−1𝒚 𝒈𝒙. The general solution of (23) is:

�̃�(𝑡) = 𝑼 𝑒𝑱 𝑡 𝑾 �̃�(0) , (24)

where 𝑼 is modal matrix with columns 𝑛 right eigenvectors; 𝑾 is
modal matrix with rows 𝑛 left eigenvectors, i.e. 𝑼 =
[

𝒖1 𝒖2 … 𝒖𝑛
]

, 𝑾 =
[

𝒘⊺
1 𝒘⊺

2 … 𝒘⊺
𝑛
]⊺; eigenvectors are

normalized so that 𝒘𝑖𝒖𝑖 = 1; 𝑱 is the system’s Jordan matrix defined
as 𝑱 = 𝑾𝑨𝑼 and 𝑒𝑱 𝑡 its matrix exponential. Then, system (23) is
asymptotically stable if for 𝑡 → ∞, �̃�(𝑡) → 𝟎𝑛,1. This is true if and only if
all diagonal elements of 𝑱 (i.e. the eigenvalues of the state matrix 𝑨)
have negative real parts.

Under the assumption that all eigenvalues 𝜆𝑖, 𝑖 = 1, 2,… , 𝑛 of 𝑨
have equal algebraic and geometric multiplicities,2 𝑱 is diagonal and
the evolution of the 𝑘th element of �̃� is:

�̃�𝑘(𝑡) =
𝑛
∑

𝑖=1
𝑒𝜆𝑖𝑡 𝒘𝑖 �̃�(0) 𝑢𝑘𝑖 , (25)

where with 𝑢𝑘𝑖, 𝑤𝑖𝑘 we denote the 𝑘th elements of 𝒖𝑖, 𝒘𝑖, respectively.
Moreover, by exciting in the 𝑘th differential equation the 𝑘th state,
e.g. by applying the initial conditions �̃�𝑘(0) = 1, and �̃�ℎ(0) = 0, ℎ ≠
𝑘 [20], we get:

�̃�𝑘(𝑡) =
𝑛
∑

𝑖=1
𝑤𝑖𝑘 𝑢𝑘𝑖 𝑒

𝜆𝑖𝑡 =
𝑛
∑

𝑖=1
𝑝[𝑥]𝑘𝑖 𝑒𝜆𝑖𝑡 , (26)

where:

𝑝[𝑥]𝑘𝑖 = 𝑤𝑖𝑘 𝑢𝑘𝑖 , (27)

is known as mode-in-state participation factor and is a classical measure
of the relative contribution of the 𝑖th dynamic mode (as represented
by the eigenvalue 𝜆𝑖) in the evolution of the 𝑘th state variation �̃�𝑘(𝑡).
Then, the matrix

𝐏𝑥 = (𝑝[𝑥]𝑘𝑖 )1≤(𝑘,𝑖)≤𝑛 , (28)

is the system’s mode-in-state participation matrix.

3.2. Proposed complex frequency participation factors

Consider a set of 𝜇 defined state-space system outputs. The 𝑘th
output 𝑧𝑘 ∈ R, 1 ≤ 𝑘 ≤ 𝜇, is defined as a nonlinear function of the
system’s states, as follows:

𝑧𝑘 = ℎ(𝒙, 𝒚) , 1 ≤ 𝑘 ≤ 𝜇 ,

where ℎ ∶ R𝑛 → R. Differentiation around (𝒙𝑜, 𝒚𝑜) gives:

�̃�𝑘 = ℎ𝒙�̃� + ℎ𝒚 �̃� , 1 ≤ 𝑘 ≤ 𝜇 , (29)

where ℎ𝒙, ℎ𝒚 are the gradients with respect to state and algebraic
variables, respectively. Using (22) in (29) yields:

�̃�𝑘 = 𝒄𝑘 �̃� = 𝑐𝑘1 𝑥1 + 𝑐𝑘2 𝑥2 +⋯ + 𝑐𝑘𝑛 𝑥𝑛 , (30)

where 𝒄𝑘 = ℎ𝒙 − ℎ𝒚𝒈−1𝒚 𝒈𝒙, 𝒄𝑘 ∈ R1×𝑛. Equivalently:

�̃�𝑘 = 𝑐𝑘1
𝑛
∑

𝑖=1
𝑝[𝑥]1𝑖 𝑒

𝜆𝑖𝑡 + 𝑐𝑘2
𝑛
∑

𝑖=1
𝑝[𝑥]2𝑖 𝑒

𝜆𝑖𝑡 +⋯ + 𝑐𝑘𝑛
𝑛
∑

𝑖=1
𝑝[𝑥]𝑛𝑖 𝑒

𝜆𝑖𝑡

or:

�̃�𝑘 =
𝑛
∑

𝑖=1
(𝑐𝑘1 𝑝

[𝑥]
1𝑖 + 𝑐𝑘2 𝑝

[𝑥]
2𝑖 +⋯ + 𝑐𝑘𝑛 𝑝

[𝑥]
𝑛𝑖 ) 𝑒

𝜆𝑖𝑡 =
𝑛
∑

𝑖=1
𝑝[𝑧]𝑘𝑖 𝑒

𝜆𝑖𝑡

where we define

𝑝[𝑧]𝑘𝑖 = 𝑐𝑘1 𝑝
[𝑥]
1𝑖 + 𝑐𝑘2 𝑝

[𝑥]
2𝑖 +⋯ + 𝑐𝑘𝑛 𝑝

[𝑥]
𝑛𝑖 , (31)

2 Note that this comes with simplicity but with no loss of generality. For the
eneral case of a dynamical system that includes eigenvalues whose geometric
ultiplicity ≠ algebraic multiplicity, the interested reader is referred to [19].
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as the mode-in-output participation factor. The quantity 𝑝[𝑧]𝑘𝑖 determines
he relative contribution of the 𝑖th dynamic system mode in the evolu-
ion of the 𝑙th system output �̃�𝑙(𝑡). To ensure that the participation fac-

tors that correspond to different outputs are comparable independently
of their units and gains, (31) is normalized, as follows:

�̂�[𝑧]𝑘𝑖 =
𝑐𝑘1 𝑝

[𝑥]
1𝑖 + 𝑐𝑘2 𝑝

[𝑥]
2𝑖 +⋯ + 𝑐𝑘𝑛 𝑝

[𝑥]
𝑛𝑖

‖𝒄𝑘‖
, (32)

here ‖ ⋅ ‖ denotes the Euclidean norm.
Assembling all 𝜇 system output rows in a single matrix 𝑪 =

𝒄⊺1 𝒄⊺2 … 𝒄⊺𝜇
]⊺, the participation matrix 𝐏𝑧 corresponding to the

utput column vector:

̃ = 𝑪 �̃� , (33)

s

𝑧 = 𝑪 𝐏𝑥 , (34)

here 𝐏𝑧 = (�̂�[𝑧]𝑘𝑖 )1≤𝑘≤𝜇,1≤𝑖≤𝑛, is called the system’s mode-in-output partic-
pation matrix.

An important special case for the output matrix is 𝑪 = −𝒈−1𝒚 𝒈𝒙, for
hich 𝐏𝑧 corresponds to the participation matrix 𝐏𝑦 of the system’s
lgebraic variables [16]:

𝑦 = −𝒈−1𝒚 𝒈𝒙 𝐏𝑥 . (35)

We proceed to define the proposed participation factors of complex
requency variables. To this aim, we note that Eq. (16) is valid at any
oint of a transient, including equilibria. At an equilibrium, merging
23) and (16) gives:

̃ = 𝑩𝑨 �̃� , (36)

hich is in the same form as (33), with 𝑪 = 𝑩𝑨. Thus, following from
33), (34), and (36), we propose computing the 2𝜈 × 𝑛 participation
actors that link the real (𝝆) and imaginary (𝝎) parts of the bus CFs to
he oscillatory modes of the system, as follows:

𝜒 = 𝑩𝑨𝐏𝑥 . (37)

t is also relevant to define the participation factors of 𝜼, which provide
nformation regarding the combined impact of oscillatory modes on
he rate of change of both voltage magnitudes and phase angles. We
ropose the following definition of these participation factors. Let
𝜌 and 𝑩𝜔 be the matrices composed of the first and last 𝜈 rows,

espectively, of 𝑩. Then, we define the complex 𝜈 × 𝑛 participation
atrix �̄�𝜂 as:

̄
𝜂 = (𝑩𝜌 + 𝚥𝑩𝜔)𝑨𝐏𝑥 , (38)

nd the real 𝜈 × 𝑛 participation matrix 𝐏𝜂 as the matrix composed of
he absolute values of the elements of �̄�𝜂 , which, with a loose notation,
ne can write as:

𝜂 = |�̄�𝜂| . (39)

Matrix 𝐏𝜒 (respectively 𝐏𝜂) relates the contribution of each bus to
he system’s oscillatory modes while distinguishing between oscilla-
ions that affect the voltage magnitude or frequency (as well as their
ombined effect). Compared to the standard participation matrix 𝐏𝑥,
atrices 𝐏𝜒 and 𝐏𝜂 link oscillatory modes to every point in the network,

egardless of whether a dynamic element is connected to it or not.
inally, 𝐏𝜒 and 𝐏𝜂 relate the oscillatory modes to CF variables, which
ave consistent physical meaning and measurement units, thus avoid-
ng the comparison of the participation of dissimilar state variables (as
s the case for standard PF analysis). The elements of 𝐏𝜒 and 𝐏𝜂 are the
FPFs that we use in the remainder of this work as a computational tool
o study the propagation of oscillations across power system networks.
4

Fig. 1. Single-line diagram of a simple radial system.

Table 1
Illustrative example: Small-signal stability analysis.

Eigenvalue State variable max1≤𝑘≤𝑛 𝑝
[𝑥]
𝑘𝑖 CF component max1≤𝑘≤2𝜈 𝑝

[𝜒]
𝑙𝑖

−16.329 ± 3.245𝚥 𝑣𝑟,AVR 0.380886 𝜌9 0.259857
−10.112 𝑥TG 0.964367 𝜔9 0.236702
−4.260 ± 0.480𝚥 𝑥𝑞,VSM 0.313891 𝜌1 0.089138

3.3. Illustrative example

To illustrate the consistency of the proposed approach with the
conventional PF analysis and highlight its merits, in this section we con-
sider a radial system comprising a standard SG, a converter-interfaced
generator, and a load. The single-line diagram of the system is shown
in Fig. 1. The SG is equipped with Automatic Voltage Regulator (AVR)
and Turbine Governor (TG), while the converter-interfaced generator
is controlled with a VSM control structure [21]. Detailed description
of the models and internal variables of the SG and converter-interfaced
generator and their controls can be found in [10,22].

Table 1 showcases how CFPFs compare to the PFs of the system’s
state variables. For three of the system’s dynamic modes, the mostly
participating state (𝑥) and bus CF component (𝜒) are shown in the ta-
ble, along with their numerical values. In Table 1, the states 𝑣𝑟,AVR and
𝑥TG refer to the conventional SG and denote, respectively, the output
of the AVR amplifier and the internal state of the TG. The state variable
𝑥𝑞,VSM signifies the internal state of the PI-controller of the 𝑞-channel
of the VSM voltage controller. We observe that the PFs of the different
states consistently indicate the controller with the highest impact on
each mode. Similarly, the mostly participating bus CF components are
the ones at the connection point of the device that mostly affects
each mode. Thus, the results confirm that both approaches identify the
source of potential oscillations. Additionally, we note that there is a
link between variables that refer to synchronization/𝑑-axis control and
𝜔 variables and voltage/𝑞-axis control and 𝜌 variables. This shows one
of the advantages of CFPFs over the traditional approach, namely their
capacity to identify modes that mostly drive changes in the frequency
or the voltage, regardless of the type of the connected device and its
control system.

4. Case studies

This section presents two case studies. The first is based on the
well-known two-area benchmark system [23] and illustrates how CFPFs
capture the spatial distribution of oscillations under different scenarios.
The second case study considers a detailed model of the all-island
Irish transmission system and demonstrates the ability of the proposed
technique to track the propagation of both critical, low-frequency and
non-critical, high frequency modes in a large, realistic model of a
power system. The two case studies demonstrate the suitability of the
proposed method for oscillation propagation analysis of systems with
different topologies, both radial and meshed.

All results in this section are produced with the software tool
Dome [24], wherein standard linear algebra calculations are performed
with LAPACK [25]. CFPFs are calculated with the procedure described

in Sections 2 and 3.
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Fig. 2. Single-line diagram of the two-area system.

Table 2
Two-area system: PFs of interarea mode in SG speeds. Results are given for the original
system and for the modified system with halved distance between Areas 1 and 2.
𝜔 PF (original system) PF (modified system)

G1 0.0256 0.1580
G2 0.0135 0.0517
G3 0.2729 0.2100
G4 0.1496 0.0846

4.1. Two-area system

The single-line diagram of the system is shown in Fig. 2. It comprises
two areas connected to each other with a double tie-line; 11 buses and
4 SGs, G1-G4. Each SG is modeled with a 6th order model and equipped
with an AVR and a TG [23]. The system feeds the loads connected to
buses 7 and 9.

4.1.1. Validation for interarea electromechanical oscillations
In this section, we illustrate the information provided by the pro-

posed CFPFs on the original two-area system. To this aim, we start by
carrying out an eigenvalue analysis, which indicates that the system
is stable, and that the most critical complex pair of eigenvalues is
−0.071 ± 3.429𝚥, with natural frequency 0.55 Hz and damping ratio
2.08%. This pair represents the system’s interarea electromechanical
mode between Areas 1 and 2.

Classical PF analysis provides information on the most dominant for
the interarea mode state variables, yet it does not reveal how the mode
propagates across the network’s buses. In this case, the most dominant
variables are the rotor angles and speeds of generators G3 and G4,
followed by a relatively smaller contribution of the angles and speeds of
generators G1 and G2. The PFs of the SG rotor speeds for the interarea
mode are summarized in Table 2 (original system).

The information of how the system’s modes propagate along the net-
work can be acquired through the proposed CFPFs. With this goal, we
proceed to compute matrix �̄�𝜂 from (39). The results for the interarea
mode are presented in Fig. 3(a) in the form of a graph, where the size
and color of each vertex is setup according to the magnitude of the
corresponding bus CFPF, illustrating the tracking of the mode at any
network bus by the proposed method. Moreover, a check of the values
of CFPFs at the buses where G1-G4 are connected confirms that the
results are consistent with those of the classical analysis of Table 2.
The graphs in Fig. 3(a) have been generated with the Python library
networkx [26].

We further check the ability of CFPFs to track the propagation
of interarea oscillations along the network. To this aim, the original
two-area system is modified by reducing by 50% the length of the
double line that interconnects Areas 1 and 2. Eigenvalue analysis of
the modified system shows that the interarea mode is now given
by the complex pair −0.141 ± 5.002𝚥. Moreover, classical PF analysis
(see Table 2) indicates that, compared to the original system, the
contribution to interarea oscillations of SGs from Area 1 (i.e. G1 and
G2), has significantly increased, whereas the contribution of generators
from Area 2 (i.e. G3 and G4), has relatively decreased. Again, the
change on the propagation of the mode at each bus of the network due
5

Fig. 3. Two-area system interarea mode: PFs of 𝜂.

to the system modification cannot be tracked by classical PF analysis.
To do that, we calculate the bus CFPFs. The CFPF results are illustrated
in Fig. 3(b). Viewing these results in comparison to Table 2 further
confirms the alignment of the proposed approach with classical PF
analysis at generator buses.

4.1.2. GFM converter-driven oscillations
In this section, we show the ability of CFPFs to capture the prop-

agation of high-frequency oscillations driven by converter-interfaced
generators. With this goal, the conventional generator G1 is replaced by
a VSM of the same rating. The VSM synchronization loop is modeled as
in [21], while the inner current and voltage control loops are modeled
as in [27]. The power injected by the converter to the network is
provided by an ideal voltage source connected to the dc-side of the
converter.

For the purposes of this scenario, we include in the system un-
suppressed oscillations by setting the damping parameter in the VSM
loop to zero. Fig. 4 shows, through the CFPFs of 𝜌, 𝜔 and 𝜂, how
three selected dynamic modes propagate across the network buses.
These include two critical modes, namely Mode 1 and Mode 2, with
corresponding eigenvalues −0.73 ± 41.76𝚥 and −0.16 ± 3.92𝚥, and damp-
ing ratios 1.74% and 4.02%, respectively, as well as a high-frequency
mode, namely Mode 3, with eigenvalues (−0.25 ± 1.2𝚥)⋅106 and damping
ratio 20.85%.

CFPFs indicate bus 1, i.e. the VSM connection bus, as the source
of the oscillatory Mode 1, with CFPF values remaining high for buses
located close to the connection point (Area 1). Given the higher values
of 𝜌 PFs over 𝜔 PFs, it is deduced that bus voltage magnitudes are
more susceptible to Mode 1 than phase angles. This information is of
particular interest for cases where the complex VSM control structure
deteriorates the frequency/voltage decoupling of the grid [28]. This
information cannot be easily derived from standard PF analysis, since
deep knowledge of the converter control structure and the significance
of the internal control states would be required.

CFPFs also indicate that G3 is the source of Mode 2. Moreover,
apart from locating the oscillation source, CFPF analysis also provides
insights on the physical interpretation of the oscillation. Namely, the
higher values for the PFs of 𝜔 compared to the ones of 𝜌, tie the
oscillation to the phase angles of the voltages at the connection bus,
which are in turn linked to the rotor angle/speed of the generators.

Similarly to Mode 1, the CFPFs for Mode 3 indicate that the VSM
connection bus has the highest participation to this mode. Compared to
Mode 1, however, it can be seen that the participation of network buses
decreases radically along the long transmission lines that interconnect
Areas 1 and 2. This observation aligns with the current understanding
that high frequency modes do not effectively propagate through long
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Fig. 4. Two-area system with GFM converter at bus 1: CFPFs of Modes 1–3.

Fig. 5. Two-area system with GFM converter at bus 1: Active power injections of VSM,
G2, G3 and G4 after the disconnection of 38% of the load at bus 7.

inductive lines. The above analysis of Modes 1–3 also shows that CFPFs
are able to capture the evolution through the network of oscillations of
different nature and timescales, which can be present concurrently in
the same system.

Fig. 5 shows the active power injections of VSM, G2, G3 and G4,
after the disconnection of 38% of the load at bus 7 at 𝑡 = 0.1 s. The time
response is consistent with the findings of CFPF analysis, illustrating
the timescale difference between the two undamped modes (Mode 1
and 2), and confirming that devices connected to dominant buses are
indeed strongly linked to these modes. Additionally, it highlights how
the calculation of PFs of 𝜌 and 𝜔 offers complementary information, not
easily discernible from time domain simulations, on the type of buses’
susceptance to these oscillations.

4.1.3. Damping from GFL loads
This section showcases an application of the CFPF analysis when

the control systems of non-synchronous devices affect the system’s
damping. For this scenario, the original two-area system is modified
to substitute the static load at bus 9 with a converter-interfaced load
of the same steady-state power consumption. All four conventional SGs
remain connected. For the converter, a standard GFL, cascaded control
configuration is used, as in [10,27]. The 𝑑-channel of the outer control
loop is regulating the active power load consumption while the 𝑞-
channel is used for ac voltage support. The proportional gain 𝐾p of the
outer PI controllers is set initially to 0.1 for both channels and it is
increased subsequently to 𝐾p = 1.

Fig. 6 shows the PFs for 𝜂 and 𝜔 and for the buses of Area 2 of
the system. For the first parameter setting (𝐾p = 0.1) a critical mode
exists with corresponding eigenvalues −0.1187 ± 3.2792𝚥 and damping
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3.62%. For the second parameter setting (𝐾p = 1), the eigenvalues
Fig. 6. Two-area system with GFL load at bus 9: CFPFs of critical mode for Area 2.
Two different values for gain 𝐾p of the outer loops of the GFL converter are used.

Fig. 7. Two-area system with GFL load at bus 9: Voltage magnitude at bus 10 after
disconnecting 6.92% of the load at bus 7. Different values for gain 𝐾p of the outer
control loop of the GFL converter are used.

corresponding to the same mode become −0.1924 ± 3.0162𝚥 and the
damping increases to 6.37%. The distribution of the PFs of 𝜂 identifies
G3 as the source participating mostly in the mode, for both parameter
settings. The distribution of 𝜔 PFs provides additional information.
Firstly, it can be seen that their values remain high across a wider
portion of buses and with no gradual decrease, moving away from the
generator. Also, variable 𝜔9 of bus 9 contributes more to the critical
mode, despite being connected to a different bus than G3 and G4. This
indicates that a device contributing to the increased damping of the
mode is connected to that specific bus. This example demonstrates that
the trend shown for the previous cases, i.e. the CFPFs being larger
at the connection point of the sources and decreasing moving away
from them, can be reversed in the presence of converter-interfaced,
non-synchronous devices. The proposed method tracks the oscillation
propagation in the network and implicitly considers the change in the
parameter setup and its effect on the system damping.

Finally, to showcase the increased damping by the GFL converter,
a time-domain simulation is performed. The contingency applied is the
loss of 6.92% of the load at bus 7 at 𝑡 = 0.1 s. Fig. 7 shows the voltage
response at bus 10 after the contingency, and for the two different
control parameter values, i.e. 𝐾p = {0.1, 1}. It is verified that, despite
the increased overshoot, the post-contingency oscillations are damped
more quickly for 𝐾p = 1.

4.2. Irish transmission system

For this case, a model of the all-island, Irish power system is
used [29]. The model consists of 1479 buses, 1851 transmission lines
and transformers, 22 conventional SGs, along with their appropriate
control systems, 169 wind power plants and 245 loads. This application
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Fig. 8. Irish system: CFPFs of 𝜂.

showcases the scalability of the proposed method as well as the effect
that the timescale of a mode has on its ability to propagate in a large
network.

For the illustration of modal propagation, two modes are selected.
Their representing eigenvalues are −0.003± 2.43𝚥 and −1.9± 10.95𝚥, with
natural frequencies 0.387 Hz and 1.743 Hz and damping ratios 0.11%
and 17.17%, respectively. One should note that from the selected
modes, the first one is critical while the second one is non-critical.
These modes are obtained by adapting the parameter tuning of the
Irish system for illustration purposes and do not represent the actual
dynamics of the system. Figs. 8(a)–8(b) show the distribution of the
CFPFs of 𝜂 in the form of network graphs, with the size of each vertex
depending on the CFPF value. The Irish network graphs are generated
using the Python module graph-tool [30]. We note that the position of
each vertex in the graph does not represent the actual geography of the
Irish network.

Fig. 8(a) shows the participation of the different network buses for
the slow mode (−0.003 ± 2.43𝚥). It can be seen that the oscillation is
visible in most of the network buses. In comparison, Fig. 8(b) shows the
participation of the buses to the high frequency mode (−1.9 ± 10.95𝚥).
It can be seen that only the connection bus of the oscillation source
presents a high PF value while the participation of the rest of the system
buses sharply diminishes.

5. Conclusions

The paper proposes the use of participation factors of CF variables
as a metric for the analysis of modal propagation in power systems.
The theoretical appraisal and simulation results show that the proposed
approach has several relevant features. First, it identifies the source of
potential oscillations in the system and is able to capture the modal
propagation through the grid, thus providing an indication on the areas
that are more affected by such oscillations. Simulation results based on
the Irish transmission system also indicate that low-frequency modes
can propagate across a large part of the network while damped, faster
modes are generally contained in a small part of the network. Then,
the PFs of the real and imaginary part of the CF provide information
on the oscillation type, i.e. whether it affects more the voltage or the
frequency. This gives a better understanding of the problem and facili-
tates the selection of appropriate corrective measures. For example, in
the case of IBRs, it provides information on dynamic coupling among
converter controllers and facilitates the tuning of the converter control
parameters. The control-design capabilities of the proposed technique
7

will be the focus of future work.
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