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Abstract—The paper discusses the relationships between elec-
trical and affine differential geometry quantities, establishing a
link between frequency and time derivatives of voltage, through
the utilization of affine geometric invariants. Based on this link,
a new instantaneous frequency estimation formula is proposed,
which is particularly suited for unbalanced and single-phase
systems. Several examples as well as measurements based on
two real-world events illustrate the findings of the paper.

Index Terms—Frequency estimation, affine differential geom-
etry, instantaneous frequency, unbalanced systems, curvature.

I. INTRODUCTION

The problem of frequency estimation has been studied
for many years and several solution approaches have been
reported, e.g., see [1]–[5]. These approaches rely on a variety
of methods, including phase-locked loops (PLLs), discrete
Fourier transform, Kalman filters, least squares, adaptive notch
filters, etc. Particularly for grid synchronization and control ap-
plications, PLLs are a popular solution due their performance
and simplicity. Three-phase PLLs, for example, are widely
utilized to provide real-time phase/frequency estimations in
grid-connected power converters. A conventional PLL config-
uration in three-phase system applications is the synchronous
reference frame (SRF) PLL, which relies on transforming input
voltages to the dq synchronous reference frame and on regulat-
ing the frame’s angular position so that either the d- or q-axis
component is zero. The analogous of SRF-PLL for single-
phase systems is the quadrature signal generation (QSG)-based
PLL. Given a single-phase voltage, the latter defines a second
dimension through a fictitious quadrature signal, required to
enable the application of the Park transform (and thus the
formulation of dq-axis voltage components), e.g., see [6].

Other approaches are based on the inverse Park [7] and
the Hilbert transform [8], and on second-order generalized
integrators [9], [10]. Although the above approaches provide
robust frequency estimations under balanced conditions, they
often perform poorly and result in estimations with sinusoidal
ripple errors for unbalanced systems [11]–[15]. Reducing
the bandwidth helps mitigate this issue and refine accuracy,
but also compromises dynamic performance [16]. Efforts to

A. Alshawabkeh, G. Tzounas and F. Milano are with the School of Electrical
and Electronic Engineering, University College Dublin, Dublin, D04V1W8,
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improve the performance of PLLs under unbalanced conditions
include, among other studies, [1], [13].

PLLs belong to the broad family of time-domain methods.
In this paper we also focus on this family but approach
the frequency estimation problem from an unconventional
perspective, based on differential geometry. The starting idea
is that voltage vectors can be perceived as velocities of points
on space curves and, as such, be analyzed using differential
geometrical invariants. In our recent work, we defined these
curves in a Euclidean space and, by applying the Frenet–Serret
formulas, we derived a correspondence between curvature and
instantaneous electrical frequency [17]–[20]. Despite provid-
ing accurate estimations for balanced systems, the curvature
obtained in these works is time-varying in stationary unbal-
anced conditions, a result that clearly does not align well with
the notion of angular frequency of stationary ac signals.

In this paper, we aim at solving this issue through an
alternative theory of differential geometry of curves, namely
through affine differential geometry. This theory has found
applications in various areas, such as control of mechanical
systems [21], computer vision [22], and motion identification
[23]. To the best of our knowledge, no application to power
system analysis or frequency estimation has been proposed
so far. The reason for the utilization of affine geometry in
this work is that affine geometry is intrinsically well suited
to estimate the curvature of conic functions, e.g., ellipses and
parabolas [24]. As unbalanced conditions can be viewed as an
elliptical curve of a three-phase voltage [20], affine geometry
appears as an ideal approach to estimate the frequency.

The specific contributions of the paper are as follows.
• A derivation of the expressions for the affine arc length

and curvature in terms of the voltage of an ac system.
• A formula of the instantaneous frequency of a three-phase

voltage as a function of affine geometric invariants.
• A demonstration of the effectiveness of the proposed for-

mula as a frequency estimation technique for unbalanced
three-phase systems, as well as for single-phase systems.

The last two points are fully supported through a variety
of examples. The examples show in particular that, for unbal-
anced systems, the proposed expression yields a more precise
instantaneous frequency estimation compared to PLLs and the
Frenet-frame based method from [17].

The remainder of the paper is organized as follows. Sec-
tion II recalls basic concepts from affine geometry. These
concepts are essential for the derivation of the theoretical
results of the paper presented in Section III. Section IV
tests the proposed approach through analytical and numerical
examples. Finally, Section V draws relevant conclusions.
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II. OUTLINES OF AFFINE DIFFERENTIAL GEOMETRY

Affine geometry can be defined as a Euclidean geometry
without measuring distances or angles [23]. Let us consider a
smooth parametric curve in the plane:

x(t) = x1(t) e1 + x2(t) e2 , (1)

where x1(t), x2(t) : R 7→ R are smooth and e1, e2 form an
orthogonal basis of the plane. Let us also assume that x does
not have inflection points, i.e., the magnitude of the operator

[ẋ(t), ẍ(t)] ̸= 0, ∀t , (2)

never vanishes. In (2), ẋ = dx/dt and ẍ = d2x/dt2, and the
bracket operator [a, b] of two vectors a, b ∈ R2, is [a, b] =
a1b2 − b1a2. The affine arc length indicated with σ, is:

σ(t) =

∫ t

t0

[ẋ(t), ẍ(t)]1/3dt , (3)

or, equivalently:

σ̇(t) = dσ(t)/dt = [ẋ(t), ẍ(t)]1/3 . (4)

A curve x is said to be parameterized with σ if, for all σ:

[x′(σ),x′′(σ)] = 1 , (5)

where x′ = dx/dσ is the affine tangent and x′′ = d2x/dσ2

is the affine normal. Applying the chain rule, x′ becomes:

x′(σ) =
dx

dσ
=

dx

dt

dt

dσ
=

ẋ(t)

[ẋ(t), ẍ(t)]1/3
, (6)

and, differentiating (5) with respect to σ, one obtains
[x′(σ),x′′′(σ)] = 0. This result implies that x′ and x′′′ are
linearly independent, leading to the relationship:

x′′′(σ) = −κa(σ)x
′(σ) , (7)

where κa is the affine curvature of x and is defined as:

κa(σ) = [x′′(σ),x′′′(σ)] . (8)

The affine curvature is represented by the area of the paral-
lelogram formed by the vectors x′′ and x′′′. It is relevant to
note that for nonsingular conic sections, κa is constant [25].
For κa = 0 the curve is a parabola; for κa > 0 an ellipse;
and for κa < 0 a hyperbola. In the next section, we consider
κa > 0.

III. VOLTAGE IN THE AFFINE PLANE

The magnetic flux φ is assumed to be the position of a
point on a space curve in generalized coordinates and, from
Faraday’s law, the speed of such a point is the voltage [19]:

φ(t) ≡ −x(t) ⇒ v(t) = −φ̇(t) ≡ ẋ(t) . (9)

In [17], it is shown that one can express voltage and current
in terms of Frenet-frame coordinates and geometric invariants.
In the same vein, but using the coordinates and invariants
of affine differential geometry, this section derives a new
instantaneous frequency formula of electrical quantities. We
discuss only voltages, but the same procedure can be followed
using currents. We consider two scenarios, namely unbalanced
three-phase systems; and single-phase systems.

A. Three-Phase Unbalanced Voltages

Let’s assume that the phases abc of a three-phase voltage
v(t) constitute a set of orthogonal coordinates:

v(t) = va(t) ea + vb(t) eb + vc(t) ec . (10)

The theory described in Section II applies to curves in two
dimensions. Thus, we first transform v(t) into the shape:

v(t) = v1(t) e1 + v2(t) e2 . (11)

This is conveniently achieved by applying the Clarke transform
to (10) and taking the α and β components, as follows:[

vα(t)
vβ(t)

]
=

√
2

3

[
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

]va(t)vb(t)
vc(t)

 . (12)

Thus, in (11) we have v1(t) = vα(t) and v2(t) = vβ(t).
1) Stationary Sinusoidal Voltages: We first consider an

unbalanced stationary sinusoidal voltage, of which affine dif-
ferential geometry allows obtaining the exact frequency. Using
Clarke’s transform, the components of v(t) in (11) are:

v1(t) = V1 cos θ(t) , v2(t) = V2 sin θ(t) , (13)

where V1, V2 are constant and θ(t) = ωot + θo; ωo is the
fundamental synchronous reference frequency; θo is constant
and its value depends on the chosen phase angle reference.

With the equivalence given in (9), equation the time deriva-
tive of the affine arc length σ̇ in (4) can be written as:

σ̇ = [v(t), v̇(t)]1/3 = (ωoV1V2)
1/3 . (14)

Note that while v, v̇ depend on time, σ̇ does not. Then,
imposing that the voltage components are as in (13), one gets:

x′(t) = v(t)/σ̇ , x′′(t) = v̇(t)/σ̇2 , x′′′(t) = v̈(t)/σ̇3 , (15)

where

v(t) = V1 cos θ(t) e1 + V2 sin θ(t) e2 ,

v̇(t) = −ωoV1 sin θ(t) e1 + ωoV2 cos θ(t) e2 ,

v̈(t) = −ω2
oV1 cos θ(t) e1 − ω2

oV2 sin θ(t) e2 .

(16)

Then, using (8), (14), (15), the affine curvature κa becomes:

κa = [v̇(t), v̈(t)]/σ̇5 = ω3
oV1V2/σ̇

5 , (17)

where κa is constant, which is as expected since (13) describes
an ellipse in the plane (v1, v2). Merging (14), (17) we obtain:

ωo =
√
κa σ̇ =

√
[v̇(t), v̈(t)]/[v(t), v̇(t)] , (18)

which shows that, calculating the frequency of v, it suffices to
measure it and estimate its first and second time derivatives.

2) Transient Voltages: In practice, noise, harmonics, and
transients prevent deriving an explicit expression of the fre-
quency. Yet, in certain conditions, it is still possible to utilize
the results above for a voltage of time-varying frequency
and/or magnitudes. Consider a time-varying voltage:

v(t) = V1(t) cosϑ(t) e1 + V2(t) sinϑ(t) e2 , (19)
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where ϑ(t) = ωot + ϕ(t). The conditions so that (18) holds
for a voltage v(t) in the form of (19) are:

dh

dth
ϕ(t) ≪ ωh

o , h = 1, 2 , (20)

dh

dth
Vi(t)

⟨Vi⟩
≪ ωh

o , i, h = 1, 2 , (21)

where ⟨·⟩ denotes the average value. For h = 1, (20) indicates
that the instantaneous frequency variation is close to the
synchronous reference frequency; for h = 2, (20) imposes a
boundary to the rate of change of frequency; and (21) impose
that radial frequency variations (see [19]) are small compared
to the grid’s fundamental frequency. These assumptions are
generally well satisfied in power systems. Conditions (20) and
(21) are sufficient for (18) to hold at least as a first order
approximation. In fact, the time derivative of v(t) in (19) is:

v̇ = (V̇1 cosϑ− ϑ̇V1 sinϑ) e1 + (V̇2 sinϑ+ ϑ̇V2 cosϑ) e2 ,

and the second time derivative is:

v̈ =−
(
ϑ̈V1 sinϑ+ ϑ̇2V1 cosϑ+ ϑ̇V̇1 sinϑ− V̈1 cosϑ

)
e1

+
(
ϑ̈V2 cosϑ+ ϑ̇2V2 sinϑ+ ϑ̇V̇2 cosϑ− V̈2 sinϑ

)
e2 ,

where the time dependency is omitted for economy of notation.
It is easy to show that by applying (20) and (21), v̇, v̈ can be

approximated with the second and third equations of (16) and,
hence, the frequency can be estimated using (18). In summary,
(20), (21) lead to the following approximated expression of the
instantaneous frequency of a time-varying unbalanced voltage:

ϑ̇(t) ≈ ωa(t) =

√
[v̇(t), v̈(t)]

[v(t), v̇(t)]
(22)

The expression of ωa in (22) is the main result of this
work. A fundamental condition for ωa to work properly is
that (2) is satisfied at all times. Harmonics introduce points
for which [ẋ, ẍ] ≤ 0, which may lead to numerical issues.
However, these issues can be easily overcome if harmonics
are adequately filtered.

B. Application to Single-Phase Voltages

We consider a single-phase voltage with instantaneous value
v(t). To apply the theory of Section II, we first need to
transform v(t) into the shape of (11). To this aim, we construct
the second dimension by employing the voltage derivative, i.e.:

v1(t) = v(t) , v2(t) = v̇(t) . (23)

Since the time derivative of sinusoidal signals gives a 90◦

rotation, using (23) is equivalent to defining a quadrature axis.
1) Stationary Sinusoidal Voltages: The result obtained in

the previous section can be extended to a stationary sinusoidal
single-phase voltage using (23). Let the voltage be:

v(t) = V cos θ(t) , (24)

where V is constant and θ is defined in (13). Then, from (23),
the components of the voltage vector are:

v1(t) = V cos θ(t) , v2(t) = −ωoV sin θ(t) . (25)

Substituting V1 = V , V2 = ωoV in (14) and (17), one obtains:

σ̇ = (ωoV )2/3 , κa = ω4
oV

2/σ̇5 . (26)

Apart from the fact that calculation of v̈(t) in this case requires
computing the third derivative of v(t), equation (18) holds and
allows estimating the frequency also for a single-phase voltage.

2) Transient Voltages: Consider a time-varying voltage:

v(t) = V (t) cosϑ(t) , (27)

where ϑ(t) = ωot+ ϕ(t). The voltage vector is defined as:

v(t) = V (t) cosϑ(t) e1

+ [V̇ (t) cosϑ(t)− V (t)ϑ̇(t) sinϑ(t)] e2 .
(28)

If one assumes:

dh

dth
ϕ(t) ≪ ωh

o ,
dh

dth
V (t)

⟨V ⟩ ≪ ωh
o , h = 1, 2, 3 , (29)

then (22) is also a good approximation of the instantaneous
frequency of the time-varying single-phase voltage in (27).

IV. CASE STUDIES

This section illustrates (22) in various conditions, comparing
its accuracy with a SRF-PLL, as well as with the Frenet
frame-based estimation ωκ(t) = [v(t), v̇(t)]/|v(t)|2, see [17].
Voltage trajectories and frequency estimations are given in per
unit (pu). Formula (22) is calculated using a sampling of the
voltage, applying the Clarke transform and then evaluating
numerically the time derivatives of the α, β components.

A. Three-Phase Voltage

Let us consider the three-phase voltage vector given in (10):

v(t) = va(t) ea + vb(t) eb + vc(t) ec , (30)

with components:

va(t) = Va sin(ωot+ ϕa(t)) ,

vb(t) = Vb sin(ωot+ ϕb(t)− ζb) ,

vc(t) = Vc sin(ωot+ ϕc(t) + ζc) .

(31)

Recall that we use (12) to convert (10) to the (α, β) plane.
1) Balanced Voltage: We discuss two cases: (i) a stationary

voltage, (ii) a voltage with time-varying magnitude. In both
cases, ωo = 100π rad/s. The parameters used are:

• E1: Vi = 12 kV, ϕi = 0 and ζb = ζc =
2π
3 rad.

• E2: Vi = 12+3 sin(πt) kV, ϕi = 0 and ζb = ζc =
2π
3 rad.

Figure 1 shows the phase voltages for E1, E2. Since the voltage
is balanced and the curve in the plane (α, β) is a circle,
there is a perfect match between the estimations obtained with
the geometrical methods, which both return, as expected, a
constant frequency (ωa = ωκ = 1 pu, ∀t). Yet the two methods
return the right result for different reasons: ωκ is constant
because the circle has a constant curvature; whereas ωa is
constant because the circle is a special case of an ellipse. The
PLL also works well in E1-E2.
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Fig. 1: Balanced 3-phase voltage components.

2) Unbalanced Voltage: We consider three examples of
unbalanced voltages with constant frequency ωo = 100π rad/s:
(i) with unequal constant magnitudes; (ii) with unequal and
time-varying voltage magnitudes; (iii) with unequal phase
displacements. The following parameters are used:

• E3: Va = Vc = 12 kV, Vb = 8 kV, ζb = ζc =
2π
3 rad.

• E4: Va = Vc = 12+3 sin(πt) kV, Vb = 8+2 sin(2πt) kV,
and ζb = ζc =

2π
3 rad.

• E5: Va = Vb = Vc = 12 kV, ζb = −2π
3 , ζc =

1.5π
3 rad.

For E3-E5, ϕi = 0. Figure 2 shows the voltage components
and estimated geometric and PLL frequencies for E3-E5. In all
three examples, the curves in the (α, β) plane are ellipses. This
means that the curvature obtained using the Frenet frame is
time-varying and periodic, thus leading to a time-varying and
periodic ωκ. Moreover, the PLL also outputs a time-varying
frequency in the form of a significant ripple around ωo. On
the other hand, (22) returns a constant ωa equal to ωo (in pu),
which is consistent with the expected in this case result.
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Fig. 2: Unbalanced 3-phase voltages and estimated frequencies.

B. Three-Phase Voltage with Time-Varying Frequency

We consider two examples of voltage with varying fre-
quency: (i) a voltage with frequency that varies periodically
around its average value. This case resembles the voltage tran-
sient following a contingency in a power system, where volt-
age phase angle oscillations arising due to electro-mechanical
swings of synchronous machines are poorly damped and
sustain for several seconds; (ii) an extreme case in power
systems, where the voltage components are time-varying and
have unequal frequencies. The following parameters are used:

• E6: Vi = 12 kV, ζb = ζc = 2π
3 rad and ϕi(t) =

π sin(0.4πt) rad.
• E7: Vi = 12 kV, ζb = ζrmc = 2π

3 rad and ϕa(t) =
ϕb(t) = π sin(0.4πt), ϕc(t) = 1.1π sin(0.4πt) rad.

Figure 3a shows ωa, ωPLL, and ωκ, for E6. Despite the
approximations imposed by assuming (20), (21), we note
that (22) is able to precisely track the exact instantaneous
frequency. In this example, also ωκ and ωPLL track well IF. On
the other hand, for E7, while ωa and ωPLL still track well the
exact frequency, ωκ shows significant fluctuations, see Fig. 3b.
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Fig. 3: Estimated angular frequency.

C. Real Voltage Dip Measurements from DFIG in Spain

In this section, the proposed frequency estimation method
is further tested using three-phase waveform measurements
from two real events of unbalanced faults. The measurements
were taken with a sample rate of 10.25 kHz from the stator
of a 690 V, 2.0 MW doubly-fed induction generator (DFIG)
installed in Moralejo, Spain. Figures 4a and 4c show the
behavior of the three-phase voltages during the two unbalanced
voltage dips and following fault clearance. Figures 4b and
4d show the results of frequency estimation, indicating that
ωa is more accurate than ωPLL and ωκ for both unbalanced
voltage dips. Note that voltage measurements and frequency
estimation outputs for all considered methods are filtered with
same second order Butterworth digital filter and an IIR filter.
In these scenarios, ωPLL shows a bigger ripple than ωκ.

D. Single-Phase Voltage

This example illustrates the performance of (22) when ap-
plied to a single-phase voltage. We first consider a voltage with
time-varying frequency ωt+ ϕ(t) and constant amplitude V :

v(t) = V sin(ωot+ ϕ(t)) . (32)

The parameters considered for this example are: V = 12 kV,
ωo = 100π rad/s and ϕ(t) = 0.05ωoe

−t(1− cos(πt)) rad.
As discussed in Section refsub:single, we construct the sec-

ond dimension by using the original signal’s derivative, as in
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(d) Fault 2: geometric frequency.

Fig. 4: Estimated frequency, real voltage dip data from 690 V DFIG.

(23). Figure 5a illustrates the accuracy of (22) in matching the
analytical value of the instantaneous frequency IF = ωo + ϕ̇.
Figure 5a also shows the frequency estimated using a con-
ventional PLL where the quadrature signal is obtained using
v(t− τ), where the transport delay is τ = 0.25T = 0.5π/ωo.
Despite the approximations resulting from (29), also in this
case ωa shows very good accuracy, whereas the PLL shows
some ripples due to the fact that the quadrature signal is not
exact because the frequency is time-varying.

Finally, we examine the effectiveness of (22) in estimating
the frequency of a single-phase voltage obtained from real
data. To this end, we use the voltage of phase b (vb) from
the same voltage dip data considered in Figs. 4a-4b (Fault 1).
The results are shown in Fig. 5b, suggesting that ωa provides
a better estimation than the PLL.
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(a) Analytical instantaneous frequency
(IF) and estimation using a phase shift
for the single-phase voltage in (32).
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Fig. 5: Estimated angular frequency.

V. CONCLUSIONS

This paper presents a frequency estimation formula based on
affine differential geometry for single-phase and unbalanced
three-phase voltages. Approximations based on the nature of
typical power system transients are made to achieve a compact
explicit expression of the proposed formula. The adequateness
of such approximations is demonstrated through a variety of
examples. When compared to PLLs, as well as to the Frenet
frame-based method from [17], the proposed formula proves to
be accurate and robust in balanced/unbalanced conditions, as
well as for voltages of time-varying magnitude and frequency.
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